
KALMAN FILTER
from the Ground Up

First Edition

Alex Becker

Revision history for the first edition
2023-05-01 First Release

2023-05-08 Minor Typo Updates

ISBN 978-965-598-439-2

Copyright © 2023 Alex Becker

kalmanfilter.net

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the author, except in the case of brief quotations embedded in critical
articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. The author will not be held li-
able for any damages caused or alleged to be caused directly or indirectly by this book.

First edition, May 2023

https://www.kalmanfilter.net/

3

The road to learning by precept is
long, by example short and effective.

Lucius Annaeus Seneca
A philosopher of Ancient Rome

Preface
Introduction
The Kalman Filter algorithm is a powerful tool for estimating and predicting system
states in the presence of uncertainty and is widely used as a fundamental component
in applications such as target tracking, navigation, and control.

Although the Kalman Filter is a straightforward concept, many resources on the
subject require extensive mathematical background and fail to provide practical
examples and illustrations, making it more complicated than necessary.

Back in 2017, I created an online tutorial based on numerical examples and intuitive
explanations to make the topic more accessible and understandable. The online
tutorial provides introductory material covering the univariate (one-dimensional)
and multivariate (multidimensional) Kalman Filters.

Over time, I have received many requests to include more advanced topics, such as
non-linear Kalman Filters (Extended Kalman Filter and Unscented Kalman Filter),
sensors fusion, and practical implementation guidelines.

Based on the material covered in the online tutorial, I authored the “Kalman Filter
from the Ground Up” e-book.

The original online tutorial will remain available for free access on the kalmanfil-

ter.net website. The e-book “Kalman Filter from the Ground Up” and the source
code for the numerical examples can be purchased online.

The book takes the reader from the basics to the advanced topics, covering both
theoretical concepts and practical applications. The writing style is intuitive, priori-
tizing clarity of ideas over mathematical rigor, and it approaches the topic from a
philosophical perspective before delving into quantification.

The book contains many illustrative examples, including 14 fully solved numerical
examples with performance plots and tables. Examples progress in a paced, logical
manner and build upon each other.

https://www.kalmanfilter.net/book.html
https://www.kalmanfilter.net/
https://www.kalmanfilter.net/
https://www.kalmanfilter.net/book.html

4

The book also includes the necessary mathematical background, providing a solid
foundation to expand your knowledge and help to overcome your math fears.

This book is the solution for those facing challenges with the Kalman Filter and the
underlying math.

Upon finishing this book, you will be able to design, simulate, and evaluate the
performance of the Kalman Filter.

The book includes four parts:

• Part 1 serves as an introduction to the Kalman Filter, using eight numerical
examples, and doesn’t require any prior mathematical knowledge. You can
call it “The Kalman Filter for Dummies,” as it aims to provide an intuitive
understanding and develop “Kalman Filter intuition.” Upon completing Part 1,
readers will thoroughly understand the Kalman Filter’s concept and be able to
design a univariate (one-dimensional) Kalman Filter.
This part is available for free access!

• Part 2 presents the Kalman Filter in matrix notation, covering the multivariate
(multidimensional) Kalman Filter. It includes a mathematical derivation
of Kalman Filter equations, dynamic systems modeling, and two numerical
examples. This section is more advanced and requires basic knowledge of Linear
Algebra (only matrix operations). Upon completion, readers will understand
the math behind the Kalman Filter and be able to design a multivariate Kalman
Filter.
Most of this part is available for free access!

• Part 3 is dedicated to the non-linear Kalman Filter, which is essential for
mastering the Kalman Filter since most real-life systems are non-linear. This
part begins with a problem statement and describes the differences between
linear and non-linear systems. It includes derivation and examples of the most
common non-linear filters: the Extended Kalman Filter and the Unscented
Kalman Filter.

• Part 4 contains practical guidelines for Kalman Filter implementation, in-
cluding sensor fusion, variable measurement uncertainty, treatment of missing
measurements, treatment of outliers, and the Kalman Filter design process.

5

About the author
My name is Alex Becker. I am from Israel. I am an
engineer with over 20 years of experience in the wireless
technologies field. As a part of my work, I had to deal
with Kalman Filters, mainly for tracking applications.

Constructive criticism is always welcome. I would greatly
appreciate your comments and suggestions. Please drop
me an email (alex@kalmanfilter.net).

R The numerical examples in this book do
not exemplify any modes, methodologies,
techniques, or parameters employed by any
operational system known to the author.

About the Kalman Filter
Many modern systems utilize multiple sensors to estimate hidden (unknown) states
through a series of measurements. For instance, a GPS receiver can estimate location
and velocity, where location and velocity represent the hidden states, while the
differential time of the arrival of signals from satellites serves as measurements.

One of the biggest challenges of tracking and control systems is providing an accurate
and precise estimation of the hidden states in the presence of uncertainty. For
example, GPS receivers are subject to measurement uncertainties influenced by
external factors, such as thermal noise, atmospheric effects, slight changes in satellite
positions, receiver clock precision, and more.

The Kalman Filter is a widely used estimation
algorithm that plays a critical role in many fields.
It is designed to estimate the hidden states of
the system, even when the measurements are im-
precise and uncertain. Also, the Kalman Filter
predicts the future system state based on past
estimations.

The filter is named after Rudolf E. Kálmán (May
19, 1930 – July 2, 2016). In 1960, Kálmán pub-
lished his famous paper describing a recursive
solution to the discrete-data linear filtering problem [1].

mailto:alex@kalmanfilter.net

Contents

I Introduction to Kalman Filter

1 The Necessity of Prediction . 27

2 Essential background I . 29

2.1 Mean and Expected Value . 29

2.2 Variance and Standard deviation . 30

2.3 Normal Distribution . 33

2.4 Random Variables . 35

2.5 Estimate, Accuracy and Precision . 36

2.6 Summary . 37

3 The α− β − γ filter . 39

3.1 Example 1 – Weighting the gold . 39

3.1.1 Estimation algorithm . 44

3.1.2 The numerical example . 44

3.1.3 Results analysis . 48

3.1.4 Example summary . 48

3.2 Example 2 – Tracking the constant velocity aircraft 49

3.2.1 The α− β filter . 50

3.2.2 Estimation Algorithm . 53

3.2.3 The numerical example . 53

3.2.4 Results analysis . 58

3.2.5 Example summary . 59

3.3 Example 3 – Tracking accelerating aircraft . 60

3.3.1 The numerical example . 61

3.3.2 Results analysis . 64

3.3.3 Example summary . 65

3.4 Example 4 – Tracking accelerating aircraft using the α−β−γ filter 66

3.4.1 The α− β − γ filter . 66

3.4.2 The numerical example . 66

3.4.3 Results analysis . 72

3.5 Summary of the α− β − (γ) filter . 73

4 Kalman Filter in one dimension . 75

4.1 One-dimensional Kalman Filter without process noise 75

4.1.1 Estimate as a random variable . 77

4.1.2 Measurement as a random variable . 77

4.1.3 State prediction . 78

4.1.4 State update . 80

4.1.5 Putting all together . 84

4.1.6 Kalman Gain intuition . 87

4.2 Example 5 – Estimating the height of a building 90

4.2.1 The numerical example . 90

4.2.2 Results analysis . 95

4.2.3 Example summary . 98

5 Adding process noise . 99

5.1 The complete model of the one-dimensional Kalman Filter 99

5.1.1 The Process Noise . 99

5.2 Example 6 – Estimating the temperature of the liquid in a tank . 101

5.2.1 The numerical example . 101

5.2.2 Results analysis . 106

5.2.3 Example summary . 108

5.3 Example 7 – Estimating the temperature of a heating liquid I . . . 109

5.3.1 The numerical example . 109

5.3.2 Results analysis . 114

5.3.3 Example summary . 115

5.4 Example 8 – Estimating the temperature of a heating liquid II . . 116

5.4.1 The numerical example . 116

5.4.2 Results analysis . 120

5.4.3 Example summary . 121

II Multivariate Kalman Filter

6 Foreword . 125

7 Essential background II . 129

7.1 Matrix operations . 129

7.2 Expectation algebra . 129

7.2.1 Basic expectation rules . 130

7.2.2 Variance and Covariance expectation rules . 131

7.3 Multivariate Normal Distribution . 136

7.3.1 Introduction . 136

7.3.2 Covariance . 136

7.3.3 Covariance matrix . 140

7.3.4 Multivariate normal distribution . 142

7.3.5 Bivariate normal distribution . 143

7.3.6 Confidence intervals . 144

7.3.7 Covariance ellipse . 145

7.3.8 Confidence ellipse . 148

8 Kalman Filter Equations Derivation . 151

8.1 State Extrapolation Equation . 151

8.1.1 Example - airplane - no control input . 153

8.1.2 Example - airplane - with control input . 155

8.1.3 Example – falling object . 157

8.1.4 State extrapolation equation dimensions . 158

8.1.5 Linear time-invariant systems . 158

8.2 Covariance Extrapolation Equation . 160

8.2.1 The estimate covariance without process noise 160

8.2.2 Constructing the process noise matrix Q . 161

8.3 Measurement equation . 167

8.3.1 The observation matrix . 168

8.3.2 Measurement equation dimensions . 169

8.4 Interim Summary . 170

8.4.1 Prediction equations . 171

8.4.2 Auxiliary equations . 172

8.5 State Update Equation . 174

8.5.1 State Update Equation dimensions . 175

8.6 Covariance Update Equation . 176

8.6.1 Covariance Update Equation Derivation . 176

8.7 The Kalman Gain . 179

8.7.1 Kalman Gain Equation Derivation . 179

8.8 Simplified Covariance Update Equation . 182

8.9 Summary . 183

9 Multivariate KF Examples . 187

9.1 Example 9 – vehicle location estimation . 187

9.1.1 Kalman Filter equations . 187

9.1.2 The numerical example . 196

9.1.3 Example analysis . 203

9.2 Example 10 – rocket altitude estimation . 205

9.2.1 Kalman Filter equations . 206

9.2.2 The numerical example . 211

9.2.3 Example analysis . 216

III Non-linear Kalman Filters

10 Foreword . 221

11 Essential background III . 223

11.1 The square root of a matrix . 223

11.2 Cholesky decomposition . 223

12 Non-linearity problem . 227

12.1 Example – linear system . 227

12.2 Example – State-to-measurement non-linear relation 230

12.3 Example – Non-linear system dynamics . 232

13 Extended Kalman Filter (EKF) . 237

13.1 Analytic linearization . 237

13.2 First-order Taylor series expansion . 239

13.3 Uncertainty projection in one dimension . 239

13.3.1 Example – linearization in a single dimension . 240

13.4 Uncertainty projection in two dimensions . 243

13.5 Multivariate uncertainty projection . 245

13.5.1 Jacobian derivation example . 246

13.6 EKF equations . 249

13.6.1 The EKF observation matrix . 249

13.6.2 The EKF state transition matrix . 250

13.6.3 EKF equations summary . 250

13.7 Example 11 – vehicle location estimation using radar 252

13.7.1 Kalman Filter equations . 252

13.7.2 The numerical example . 257

13.7.3 Example summary . 266

13.8 Example 12 - estimating the pendulum angle 268

13.8.1 Kalman Filter equations . 269

13.8.2 The numerical example . 273

13.8.3 Example summary . 279

13.9 Limitations of EKF . 280

13.9.1 Linearization error - 2D example . 280

14 Unscented Kalman Filter (UKF) . 283

14.1 The Unscented Transform (UT) . 284

14.1.1 Step 1 – sigma points selection . 284

14.1.2 Step 2 – points propagation . 289

14.1.3 Step 3 – compute sigma points weights . 291

14.1.4 Step 4 - approximate the mean and covariance of the output distribu-

tion . 291

14.1.5 Unscented Transform summary . 295

14.2 The UKF algorithm - Predict Stage . 297

14.3 Statistical linear regression . 298

14.4 The UKF algorithm - Update Stage . 300

14.4.1 State update . 300

14.4.2 Kalman gain derivation . 300

14.4.3 Covariance update equation . 301

14.5 UKF update summary . 304

14.6 UKF algorithm summary . 305

14.7 Example 13 – vehicle location estimation using radar 306

14.7.1 The numerical example . 307

14.7.2 Example summary . 318

14.8 Sigma Point Algorithm Modification . 320

14.9 Modified UKF algorithm summary . 323

14.10 Example 14 - estimating the pendulum angle 324

14.10.1The numerical example . 325

14.10.2Example summary . 332

15 Non-linear filters comparison . 333

16 Conclusion . 337

IV Kalman Filter in practice

17 Sensors Fusion . 341

17.1 Combining measurements in one dimension 341

17.2 Combining n measurements . 344

17.3 Combining measurements in k dimensions . 344

17.4 Sensor data fusion using Kalman filter . 346

17.4.1 Method 1 – measurements fusion . 346

17.4.2 Method 2 – state fusion . 347

17.5 Multirate Kalman Filter . 349

18 Variable measurement error . 351

19 Treating missing measurements . 353

20 Treating outliers . 355

20.1 Identifying outliers . 355

20.1.1 Unlikely or unusual measurements . 356

20.1.2 High statistical distance . 356

20.2 Impact of outliers . 358

20.3 Treating outliers . 360

21 Kalman Filter Initialization . 363

21.1 Linear KF Initialization . 363

21.2 Non-linear KF initialization . 366

21.3 KF initialization techniques . 369

22 KF Development Process . 371

22.1 Kalman Filter Design . 371

22.2 Simulation . 373

22.2.1 Scenario Module . 373

22.2.2 Measurements Module . 374

22.2.3 Kalman Filter Module . 374

22.2.4 Analysis . 374

22.2.5 Performance Examination . 375

V Appendices

A The expectation of variance . 379

A.1 Expectation rules . 379

A.2 The expectation of the variance . 380

A.3 The expectation of the body displacement variance 381

B Confidence Interval . 383

B.1 Cumulative Probability . 383

B.2 Normal inverse cumulative distribution . 387

B.3 Confidence interval . 389

C Modeling linear dynamic systems . 391

C.1 Derivation of the state extrapolation equation 391

C.2 The state space representation . 392

C.2.1 Example - constant velocity moving body . 392

C.2.2 Modeling high-order dynamic systems . 394

C.2.3 Example - constant acceleration moving body 396

C.2.4 Example - mass-spring-damper system . 398

C.2.5 More examples . 401

C.3 Solving the differential equation . 401

C.3.1 Dynamic systems without input variable . 401

C.3.2 Dynamic systems with an input variable . 404

D Derivative of matrix product trace . 407

D.1 Statement 1 . 407

D.2 Statement 2 . 408

E Pendulum motion simulation . 411

F Statistical Linear Regression . 415

G The product of univariate Gaussian PDFs 421

G.1 Product of two univariate Gaussian PDFs . 421

G.2 Product of n univariate Gaussian PDFs . 424

H Product of multivariate Gaussian PDFs 427

H.1 Product of n multivariate Gaussian PDFs . 427

H.2 Product of 2 multivariate Gaussian PDFs . 429

Appendices . 377

Bibliography . 433

Articles . 433

Books . 434

Index . 435

List of Figures

1.1 Tracking radar. 27

2.1 Coins. 29

2.2 Man on scales. 30

2.3 Normal distribution PDFs. 34

2.4 Proportions of the normal distribution. 35

2.5 Accuracy and Precision. 36

2.6 Statistical view of measurement. 37

3.1 Gold Bars. 39

3.2 Measurements vs. True value. 40

3.3 Example Notation. 41

3.4 State Update Equation. 43

3.5 State Update Equation. 44

3.6 Example 1: Measurements vs. True value vs. Estimates. 48

3.7 1D scenario. 49

3.8 α− β filter estimation algorithm. 53

3.9 Measurements vs. True value vs. Estimates - low Alpha and Beta. 58

3.10 Measurements vs. True value vs. Estimates - high Alpha and Beta. 58

3.11 Constant Velocity Movement. 60

3.12 Accelerated Movement. 61

3.13 Example 3 - range vs. time. 64

3.14 Example 3 - velocity vs. time. 65

3.15 Example 4: Range vs. Time. 72

3.16 Example 4: Velocity vs. Time. 72

3.17 Example 4: Acceleration vs. Time. 73

4.1 Schematic description of the Kalman Filter algorithm. 76

4.2 Example 1: Measurements vs. True value vs. Estimates. 76

4.3 Measurements Probability Density Function. 78

4.4 State Prediction Illustration. 79

4.5 State Update Illustration. 80

4.6 Detailed description of the Kalman Filter algorithm. 86

4.7 High Kalman Gain. 88

4.8 Low Kalman Gain. 89

4.9 Estimating the building height. 90

4.10 Example 5: the Kalman Gain. 95

4.11 Example 5: True value, measured values and estimates. 96

4.12 High uncertainty. 97

4.13 Low uncertainty. 97

4.14 Normal uncertainty. 98

5.1 Estimating the liquid temperature. 101

5.2 Example 6 : true temperature vs. measurements . 102

5.3 Example 6: the Kalman Gain. 107

5.4 Example 6: true value, measured values and estimates. 107

5.5 Example 7 : true temperature vs. measurements . 109

5.6 Example 7: true value, measured values and estimates. 114

5.7 Example 7: 100 measurements. 115

5.8 Example 8: true value, measured values and estimates. 120

5.9 Example 8: the Kalman Gain. 120

6.1 Airplane in 3D. 126

7.1 Object on the x-y plane. 137

7.2 Examples of different measurement sets. 137

7.3 Bivariate Gaussian. 143

7.4 Univariate Gaussian. 144

7.5 Bivariate Gaussian with projection. 145

7.6 Covariance ellipse. 146

7.7 Confidence ellipse. 148

8.1 Kalman Filter Extrapolation. 152

8.2 Spring System. 153

8.3 Falling Object. 153

8.4 Amplifier. 159

8.5 Discrete Noise. 162

8.6 Continuous Noise. 166

8.7 Predict-Update Diagram. 183

8.8 The Kalman Filter Diagram. 183

9.1 Vehicle location estimation. 187

9.2 Vehicle trajectory. 196

9.3 Example 9: true value, measured values and estimates. 203

9.4 Example 9: true value, measured values and estimates - zoom. 204

9.5 Example 10: rocket altitude estimation. 205

9.6 Example 10: true value, measured values and estimates of the rocket alti-

tude. 216

9.7 Example 10: true value, measured values and estimates of the rocket veloc-

ity. 216

12.1 Balloon altitude measurement using radar. 228

12.2 Linear System. 229

12.3 Balloon altitude measurement using optical sensor. 230

12.4 Non-linear System. 231

12.5 Pendulum. 232

13.1 Analytic Linearization. 237

13.2 Linearization . 242

13.3 The tangent plane. 243

13.4 Vehicle location estimation using radar. 247

13.5 Vehicle location estimation using radar. 252

13.6 Vehicle trajectory. 257

13.7 Example 11: true value, measured values and estimates. 266

13.8 Example 11: true value, measured values and estimates - zoom. 267

13.9 Pendulum position measurement. 268

13.10 Pendulum true position and velocity. 273

13.11 Example 12: pendulum angle - true value, measured values and esti-

mates. 279

13.12 Example 12: pendulum anglular velocity - true value, measured values and

estimates. 279

13.13 Linearization Error. 280

13.14 2D example. 281

13.15 EKF linearized covariance. 281

13.16 EKF vs. UKF linearized covariance. 282

14.1 1D RV Sigma Points. 286

14.2 2D RV Sigma Points. 289

14.3 1D RV Sigma Points propagation. 290

14.4 2D RV Sigma Points propagation. 291

14.5 1D RV Unscented Transform. 292

14.6 2D RV Unscented Transform. 295

14.7 UKF algorithm diagram. 305

14.8 Example 13: true value, measured values and estimates. 319

14.9 Example 13: true value, measured values and estimates - zoom. 319

14.10 α influence on the Sigma Points. 322

14.11 Modified UKF algorithm diagram. 323

14.12 Example 14: pendulum angle - true value, measured values and esti-

mates. 332

14.13 Example 14: pendulum velocity - true value, measured values and esti-

mates. 332

15.1 EKF and UKF absolute error of the vehicle position. 333

15.2 EKF and UKF estimations uncertainty of the vehicle position. 334

15.3 EKF and UKF absolute error of the pendulum angle and angular velocity. 334

15.4 EKF and UKF estimations uncertainty of the pendulum angle and angular

velocity. 335

17.1 Two measurements PDF. 342

17.2 Two measurements fusion. 344

17.3 Two 2D measurements fusion. 345

17.4 2 Sensors measurements fusion. 346

17.5 Track-to-track fusion. 347

17.6 Multirate Kalman Filter. 349

20.1 Outlier example. 355

20.2 Low Mahalanobis distance. 357

20.3 High Mahalanobis distance. 357

20.4 Abnormal measurement with high uncertainty. 359

20.5 Abnormal measurement with low uncertainty. 360

21.1 LKF rough initiation. 363

21.2 LKF rough initiation: True vs. estimated position. 364

21.3 LKF fine initiation: True vs. estimated position. 365

21.4 LKF uncertainty: rough vs. fine initiation. 366

21.5 Non-linear KF fine initiation. 367

21.6 Non-linear KF rough initiation. 367

21.7 Non-linear KF very rough initiation. 368

21.8 Non-linear KF very rough initiation: filter performance. 368

22.1 KF development process. 371

22.2 KF simulation diagram. 373

22.3 KF simulation diagram. 376

B.1 Cumulative Probability. 383

B.2 Standard Normal Distribution. 385

B.3 z-score table. 385

B.4 Normal Inverse Cumulative Distribution. 388

B.5 z-score table. 388

B.6 Confidence interval. 390

C.1 The process of the state extrapolation equation derivation. 392

C.2 The constant acceleration model. 396

C.3 Mass-spring-damper model. 398

C.4 Mass-spring-damper forces. 399

E.1 Pendulum motion. 411

List of Tables

2.1 Players’ heights. 31

2.2 Distance from the mean. 31

2.3 Squared distance from the mean. 32

3.1 Averaging equation. 42

3.2 Example 1 summary. 48

3.3 Example 2 summary. 57

3.4 Example 3 filter iterations. 62

3.5 Example 4 filter iterations. 69

4.1 Covariance update equation derivation. 83

4.2 Kalman Filter equations in one dimension. 85

4.3 Example 5 filter iterations. 93

5.1 Kalman Filter equations in one dimension with process noise. 100

5.2 Example 6 filter iterations. 104

5.3 Example 7 filter iterations. 111

5.4 Example 5 filter iterations. 117

7.1 Expectation rules. 130

7.2 Variance and covariance expectation rules. 131

7.3 Variance expectation rule. 132

7.4 Covariance expectation rule. 133

7.5 Variance square expectation rule. 134

7.6 Variance sum expectation rule. 135

7.7 Covariance equation. 138

7.8 Sample covariance equation. 139

8.1 Matrix dimensions of the state extrapolation equation. 158

8.2 Matrix dimensions of the measurement equation variables. 169

8.3 Matrix dimensions of the state update equation variables. 175

8.4 Equations for the Covariance Update Equation derivation. 176

8.5 Covariance Update Equation derivation. 177

8.6 Covariance Update Equation rearrange. 180

8.7 Kalman Gain Equation Derivation. 181

8.8 Equations for the Covariance Update Equation derivation. 182

8.9 Kalman Filter equations. 184

8.10 Kalman Filter notation. 185

9.1 Example 9 measurements. 198

9.2 Example 10 measurements. 212

13.1 Kalman Filter equations. 251

13.2 Example 11 measurements. 259

13.3 Example 12 measurements. 274

14.1 LKF and UKF predict stage equations. 298

14.2 Definitions. 299

14.3 Covariance Update Equation derivation. 301

14.4 LKF and UKF update stage equations. 304

14.5 Example 13 measurements. 307

14.6 Example 14 measurements. 325

A.1 Expectation rules. 379

A.2 Variance expectation rule. 380

A.3 Variance square expectation rule. 381

B.1 Cumulative distribution from z-score. 386

B.2 Cumulative distribution from µ and σ. 387

B.3 Normal cumulative distribution. 389

D.1 Statements. 407

F.1 Definitions. 415

F.2 Expand the error equation. 416

F.3 Finding an optimal b. 417

F.4 Finding an optimal M . 417

F.5 Finding an optimal M continued. 418

G.1 Exponent term. 422

G.2 Three Gaussian multiplication variance. 424

G.3 Three Gaussian multiplication variance. 425

H.1 Change the form of a multivariate Gaussian equation. 427

H.2 Reducing the number of the matrix inversions. 431

Acronyms

CPU Central Processing Unit
EKF Extended Kalman Filter
GNSS Global Navigation Satellite System
GPS Global Positioning System
INS Inertial Navigation System
KF Kalman Filter
LiDAR Light Detection and Ranging
LKF Linear Kalman Filter
LTI Linear Time Invariant
NASA National Aeronautics and Space Administration
PDF Probability Density Function
RMS Root Mean Square
RMSE Root Mean Square Error
SNR Signal to Noise Ratio
SPKF Sigma-point Kalman Filter
UAV Unmanned Air Vehicle
UKF Unscented Kalman Filter
UT Unscented Transform

I Introduction to
Kalman Filter

1 The Necessity of Prediction 27

2 Essential background I . 29

3 The α− β − γ filter . 39

4 Kalman Filter in one dimension 75

5 Adding process noise . 99

1. The Necessity of Prediction

Before delving into the Kalman Filter explanation, let us first understand the necessity
of a tracking and prediction algorithm.

To illustrate this point, let’s take the example of a tracking radar.

Figure 1.1: Tracking radar.

Suppose we have a track cycle of 5 seconds. At intervals of 5 seconds, the radar
samples the target by directing a dedicated pencil beam.

Once the radar “visits” the target, it proceeds to estimate the current position and
velocity of the target. The radar also estimates (or predicts) the target’s position at
the time of the next track beam.

The future target position can be easily calculated using Newton’s motion equations:

x = x0 + v0∆t+
1

2
a∆t2 (1.1)

Where:

x is the target position
x0 is the initial target position
v0 is the initial target velocity
a is the target acceleration
∆t is the time interval (5 seconds in our example)

28 Chapter 1. The Necessity of Prediction

When dealing with three dimensions, Newton’s motion equations can be expressed
as a system of equations:

x = x0 + vx0∆t+
1

2
ax∆t2

y = y0 + vy0∆t+
1

2
ay∆t2

z = z0 + vz0∆t+
1

2
az∆t2

(1.2)

The set of target parameters [x, y, z, vx, vy, vz, ax, ay, az] is known as the System
State. The current state serves as the input for the prediction algorithm, while the
algorithm’s output is the future state, which includes the target parameters for the
subsequent time interval.

The system of equations mentioned above is known as a Dynamic Model or State
Space Model. The dynamic model describes the relationship between the input
and output of the system.

Apparently, if the target’s current state and dynamic model are known, predicting
the target’s subsequent state can be easily accomplished.

In reality, the radar measurement is not entirely accurate. It contains random
errors or uncertainties that can affect the accuracy of the predicted target state.
The magnitude of the errors depends on various factors, such as radar calibration,
beam width, and signal-to-noise ratio of the returned echo. The random errors or
uncertainties in the radar measurement are known as Measurement Noise.

In addition, the target motion is not always aligned with the motion equations due
to external factors like wind, air turbulence, and pilot maneuvers. This misalignment
between the motion equations and the actual target motion results in an error or
uncertainty in the dynamic model, which is called Process Noise.

Due to the Measurement Noise and the Process Noise, the estimated target position
can be far away from the actual target position. In this case, the radar might send
the track beam in the wrong direction and miss the target.

In order to improve the radar’s tracking accuracy, it is essential to employ a prediction
algorithm that accounts for both process and measurement uncertainty.

The most common tracking and prediction algorithm is the Kalman Filter.

2. Essential background I

Before we start, I would like to explain several fundamental terms such as variance,
standard deviation, normal distribution, estimate, accuracy, precision, mean, expected
value, and random variable.

I expect that many readers of this book are familiar with introductory statistics.
However, at the beginning of this book, I promised to supply the necessary background
that is required to understand how the Kalman Filter works. If you are familiar with
this topic, feel free to skip this chapter and jump to chapter 3.

2.1 Mean and Expected Value
Mean and Expected Value are closely related terms. However, there is a difference.

For example, given five coins – two 5-cent coins and three 10-cent coins, we can easily
calculate the mean value by averaging the values of the coins.

Figure 2.1: Coins.

Vmean =
1

N

N∑
n=1

Vn =
1

5
(5 + 5 + 10 + 10 + 10) = 8cent (2.1)

The above outcome cannot be defined as the expected value because the system
states (the coin values) are not hidden, and we’ve used the entire population (all 5
coins) for the mean value calculation.

Now assume five different weight measurements of the same person: 79.8kg, 80kg,
80.1kg, 79.8kg, and 80.2kg. The person is a system, and the person’s weight is a
system state.

30 Chapter 2. Essential background I

Figure 2.2: Man on scales.

The measurements are different due to the random measurement error of the scales.
We do not know the true value of the weight since it is a Hidden State. However,
we can estimate the weight by averaging the scales’ measurements.

W =
1

N

N∑
n=1

Wn =
1

5
(79.8 + 80 + 80.1 + 79.8 + 80.2) = 79.98kg (2.2)

The outcome of the estimate is the expected value of the weight.

The expected value is the value you would expect your hidden variable to have over
a long time or many trials.

The mean is usually denoted by the Greek letter µ.

The letter E usually denotes the expected value.

2.2 Variance and Standard deviation
The Variance is a measure of the spreading of the data set from its mean.

The Standard Deviation is the square root of the variance.

The standard deviation is denoted by the Greek letter σ (sigma). Accordingly, the
variance is denoted by σ2.

Suppose we want to compare the heights of two high school basketball teams. The
following table provides the players’ heights and the mean height of each team.

2.2 Variance and Standard deviation 31

Player 1 Player 2 Player 3 Player 4 Player 5 Mean

Team A 1.89m 2.1m 1.75m 1.98m 1.85m 1.914m

Team B 1.94m 1.9m 1.97m 1.89m 1.87m 1.914m

Table 2.1: Players’ heights.

As we can see, the mean height of both teams is the same. Let us examine the height
variance.

Since the variance measures the spreading of the data set, we would like to know the
data set deviation from its mean. We can calculate the distance from the mean for
each variable by subtracting the mean from each variable.

The height is denoted by x, and the heights mean by the Greek letter µ. The distance
from the mean for each variable would be:

xn − µ = xn − 1.914m (2.3)

The following table presents the distance from the mean for each variable.

Player 1 Player 2 Player 3 Player 4 Player 5

Team A -0.024m 0.186m -0.164m 0.066m -0.064m

Team B 0.026m -0.014m 0.056m -0.024m -0.044m

Table 2.2: Distance from the mean.

Some of the values are negative. To get rid of the negative values, let us square the
distance from the mean:

(xn − µ)2 = (xn − 1.914m)2 (2.4)

The following table presents the squared distance from the mean for each variable.

32 Chapter 2. Essential background I

Player 1 Player 2 Player 3 Player 4 Player 5

Team A 0.000576m2 0.034596m2 0.026896m2 0.004356m2 0.004096m2

Team B 0.000676m2 0.000196m2 0.003136m2 0.000576m2 0.001936m2

Table 2.3: Squared distance from the mean.

To calculate the variance of the data set, we need to find the average value of all
squared distances from the mean:

σ2 =
1

N

N∑
n=1

(xn − µ)2 (2.5)

For team A, the variance would be:

σ2
A =

1

N

N∑
n=1

(xn − µ)2

=
1

5
(0.000576 + 0.034596 + 0.026896 + 0.004356 + 0.004096) = 0.014m2

For team B, the variance would be:

σ2
B =

1

N

N∑
n=1

(xn − µ)2

=
1

5
(0.000676 + 0.000196 + 0.003136 + 0.000576 + 0.001936) = 0.0013m2

We can see that although the mean of both teams is the same, the measure of the
height spreading of Team A is higher than the measure of the height spreading of
Team B. Therefore, the Team A players are more diverse than the Team B players.
There are players for different positions like ball handler, center, and guards, while
the Team B players are not versatile.

The units of the variance are meters squared; it is more convenient to look at the
standard deviation, which is a square root of the variance.

2.3 Normal Distribution 33

σ =

√√√√√ 1

N

N∑
n=1

(xn − µ)2 (2.6)

• The standard deviation of Team A players’ heights would be 0.12m.
• The standard deviation of Team B players’ heights would be 0.036m.

Now, assume that we would like to calculate the mean and variance of all basketball
players in all high schools. That would be an arduous task - we would need to collect
data on every player from every high school.

On the other hand, we can estimate the players’ mean and variance by picking a big
data set and making the calculations on this data set.

The data set of 100 randomly selected players should be sufficient for an accurate
estimation.

However, when we estimate the variance, the equation for the variance calculation is
slightly different. Instead of normalizing by the factor N , we shall normalize by the
factor N − 1:

σ2 =
1

N − 1

N∑
n=1

(xn − µ)2 (2.7)

The factor of N − 1 is called Bessel’s correction.

You can see the mathematical proof of the above equation on visiondummy or
Wikipedia.

2.3 Normal Distribution
It turns out that many natural phenomena follow the Normal Distribution. The
normal distribution, also known as the Gaussian (named after the mathematician
Carl Friedrich Gauss), is described by the following equation:

f
(
x;µ, σ2

)
=

1
√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(2.8)

The Gaussian curve is also called the PDF (Probability Density Function) for
the normal distribution.

http://www.visiondummy.com/2014/03/divide-variance-n-1/
https://en.wikipedia.org/wiki/Bessel%27s_correction

34 Chapter 2. Essential background I

The following chart describes PDFs of the pizza delivery time in three cities: city
’A,’ city ’B,’ and city ’C.’

Figure 2.3: Normal distribution PDFs.

• In city ’A,’ the mean delivery time is 30 minutes, and the standard deviation
is 5 minutes.

• In city ’B,’ the mean delivery time is 40 minutes, and the standard deviation
is 5 minutes.

• In city ’C,’ the mean delivery time is 30 minutes, and the standard deviation
is 10 minutes.

We can see that the Gaussian shapes of the city ’A’ and city ’B’ pizza delivery times
are identical; however, their centers are different. That means that in city ’A,’ you
wait for pizza for 10 minutes less on average, while the measure of spread in pizza
delivery time is the same.

We can also see that the centers of Gaussians in the city ’A’ and city ’C’ are the
same; however, their shapes are different. Therefore the average pizza delivery time
in both cities is the same, but the measure of spread is different.

The following chart describes the proportions of the normal distribution.

2.4 Random Variables 35

Figure 2.4: Proportions of the normal distribution.

• 68.26% of the pizza delivery times in City A lie within µ ± σ range (25-35
minutes)

• 95.44% of the pizza delivery times in City A lie within µ ± 2σ range (20-40
minutes)

• 99.74% of the pizza delivery times in City A lie within µ ± 3σ range (15-45
minutes)

Usually, measurement errors are distributed normally. The Kalman Filter design
assumes a normal distribution of the measurement errors.

2.4 Random Variables
A random variable describes the hidden state of the system. A random variable is
a set of possible values from a random experiment.

The random variable can be continuous or discrete:

• A continuous random variable can take any value within a specific range, such
as battery charge time or marathon race time.

• A discrete random variable is countable, such as the number of website visitors
or the number of students in the class.

36 Chapter 2. Essential background I

The random variable is described by the probability density function. The probability
density function is characterized by moments.

The moments of the random value are expected values of powers of the random
variable. We are interested in two types of moments:

• The kth raw moment is the expected value of the kth power of the random
variable: E

(
Xk
)
.

• The kth central moment is the expected value of the kth power of the random
variable distribution about its mean: E

(
(X − µX)

k
)
.

In this book, the random variables are characterized by the following:

• The first raw moment E (X) – the mean of the sequence of measurements.
• The second central moment E

(
(X − µX)

2) – the variance of the sequence of
measurements.

2.5 Estimate, Accuracy and Precision
An Estimate is about evaluating the hidden state of the system. The true position
of the aircraft is hidden from the observer. We can estimate the aircraft position
using sensors, such as radar. The estimate can be significantly improved by using
multiple sensors and applying advanced estimation and tracking algorithms (such as
the Kalman Filter). Every measured or computed parameter is an estimate.

Accuracy indicates how close the measurement is to the true value.

Precision describes the variability in a series of measurements of the same parameter.
Accuracy and precision form the basis of the estimate.

The following figure illustrates accuracy and precision.

Figure 2.5: Accuracy and Precision.

2.6 Summary 37

High-precision systems have low variance in their measurements (i.e., low uncertainty),
while low-precision systems have high variance in their measurements (i.e., high
uncertainty). The random measurement error produces the variance.

Low-accuracy systems are called biased systems since their measurements have a
built-in systematic error (bias).

The influence of the variance can be significantly reduced by averaging or smoothing
measurements. For example, if we measure temperature using a thermometer with a
random measurement error, we can make multiple measurements and average them.
Since the error is random, some measurements would be above the true value and
others below the true value. The estimate would be close to the true value. The
more measurements we make, the closer the estimate will be.

On the other hand, a biased thermometer produces a constant systematic error in
the estimate.

All examples in this book assume unbiased systems.

2.6 Summary
The following figure represents a statistical view of measurement.

Figure 2.6: Statistical view of measurement.

A measurement is a random variable described by the PDF.

The mean of the measurements is the Expected Value of the random variable.

38 Chapter 2. Essential background I

The offset between the mean of the measurements and the true value is the accuracy
of the measurements, also known as bias or systematic measurement error.

The dispersion of the distribution is the measurement precision, also known as the
measurement noise, random measurement error, or measurement uncer-
tainty.

3. The α− β − γ filter

This chapter is introductory, and it describes the α− β and α− β − γ filters. These
filters are frequently used for time series data smoothing. The principles of the
α− β(−γ) filter are closely related to the Kalman Filter principles.

3.1 Example 1 – Weighting the gold
Now we are ready for the first simple example. In this example, we estimate the
state of the static system. A static system is a system that doesn’t change its state
over a reasonable period. For instance, the static system could be a tower, and the
state would be its height.

In this example, we estimate the weight of the gold bar. We have unbiased scales, i.e.,
the measurements don’t have a systematic error, but the measurements do include
random noise.

Figure 3.1: Gold Bars.

The system is the gold bar, and the system state is the weight of the gold bar. The
dynamic model of the system is constant since we assume that the weight doesn’t
change over short periods.

To estimate the system state (i.e., the weight value), we can make multiple measure-
ments and average them.

40 Chapter 3. The α− β − γ filter

Figure 3.2: Measurements vs. True value.

At the time n, the estimate x̂n,n would be the average of all previous measurements:

x̂n,n =
1

n
(z1 + z2 + . . .+ zn−1 + zn) =

1

n

n∑
i=1

(zi) (3.1)

Example Notation:

x is the true value of the weight
zn is the measured value of the weight at time n

x̂n,n is the estimate of x at time n (the estimate is made after taking the
measurement zn)

x̂n+1,n is the estimate of the future state (n+ 1) of x. The estimate is made at the
time n. In other words, x̂n+1,n is a predicted state or extrapolated state

x̂n−1,n−1 is the estimate of x at time n− 1 (the estimate is made after taking the
measurement zn−1)

x̂n,n−1 is a prior prediction - the estimate of the state at time n. The prediction is
made at the time n− 1

R In the literature, a caret (or hat) over a variable indicates an estimated value.

The dynamic model in this example is static (or constant) since the weight of gold
doesn’t change over time, therefore x̂n+1,n = x̂n,n.

Although the Equation 3.1 is mathematically correct, it is not practical for implemen-
tation. In order to estimate x̂n,n we need to remember all historical measurements;
therefore, we need a large memory. We also need to recalculate the average repeatedly

3.1 Example 1 – Weighting the gold 41

if we want to update the estimated value after every new measurement. Thus, we
need a more powerful Central Processing Unit (CPU).

It would be more practical to keep the last estimate only (x̂n−1,n−1) and update it
after every new measurement. The following figure exemplifies the required algorithm:

• Estimate the current state based on the measurement and prior prediction.
• Predict the next state based on the current state estimate using the Dynamic

Model.

Figure 3.3: Example Notation.

We can modify the averaging equation for our needs using a small mathematical
trick:

42 Chapter 3. The α− β − γ filter

Equation Notes

x̂n,n =
1

n

n∑
i=1

(zi)
Average formula: sum of n measurements
divided by n

=
1

n

(
n−1∑
i=1

(zi) + zn

)
Sum of the n− 1 measurements plus the
last measurement divided by n

=
1

n

n−1∑
i=1

(zi) +
1

n
zn Expand

=
1

n

n− 1

n− 1

n−1∑
i=1

(zi) +
1

n
zn Multiply and divide by term n− 1

=
n− 1

n

1

n− 1

n−1∑
i=1

(zi) +
1

n
zn

Reorder. The ’orange’ term is the prior
estimate

=
n− 1

n
x̂n−1,n−1 +

1

n
zn Rewriting the sum

= x̂n−1,n−1 −
1

n
x̂n−1,n−1 +

1

n
zn Distribute the term

n− 1

n

= x̂n−1,n−1 +
1

n
(zn − x̂n−1,n−1) Reorder

Table 3.1: Averaging equation.

x̂n−1,n−1 is the estimated state of x at the time n− 1, based on the measurement at
the time n− 1.

Let’s find x̂n,n−1 (the predicted state of x at the time n), based on x̂n−1,n−1 (the
estimation at the time n− 1). In other words, we would like to extrapolate x̂n−1,n−1

to the time n.

Since the dynamic model in this example is static, the predicted state of x equals
the estimated state of x: x̂n,n−1 = x̂n−1,n−1.

Based on the above, we can write the State Update Equation:

3.1 Example 1 – Weighting the gold 43

State Update Equation

x̂n,n = x̂n,n−1 +
1

n
(zn − x̂n,n−1) (3.2)

The State Update Equation is one of the five Kalman filter equations. It means the
following:

Figure 3.4: State Update Equation.

The factor 1/n is specific to our example. We will discuss the vital role of this factor
later, but right now, I would like to note that in “Kalman Filter language,” this
factor is called the Kalman Gain. It is denoted by Kn. The subscript n indicates
that the Kalman Gain can change with every iteration.

The discovery of Kn was one of Rudolf Kalman’s significant contributions.

Before we get into the guts of the Kalman Filter, we use the Greek letter αn instead
of Kn.

So, the State Update Equation looks as follows:

x̂n,n = x̂n,n−1 + αn (zn − x̂n,n−1) (3.3)

The term (zn − x̂n,n−1) is the “measurement residual,” also called innovation. The
innovation contains new information.

In this example, 1/n decreases as n increases. In the beginning, we don’t have
enough information about the current state; thus, the first estimation is based on
the first measurement 1

n
|n=1 = 1 . As we continue, each successive measurement

has less weight in the estimation process, since 1/n decreases. At some point, the
contribution of the new measurements will become negligible.

Let’s continue with the example. Before we make the first measurement, we can
guess (or rough estimate) the gold bar weight simply by reading the stamp on the
gold bar. It is called the Initial Guess, and it is our first estimate.

44 Chapter 3. The α− β − γ filter

The Kalman Filter requires the initial guess as a preset, which can be very rough.

3.1.1 Estimation algorithm
The following chart depicts the estimation algorithm that is used in this example.

Figure 3.5: State Update Equation.

Now we are ready to start the measurement and estimation process.

3.1.2 The numerical example

3.1.2.1 Iteration Zero

Initialization

Our initial guess of the gold bar weight is 1000 grams. The initial guess is used only
once for the filter initiation. Thus, it won’t be required for successive iterations.

x̂0,0 = 1000g

Prediction

The weight of the gold bar is not supposed to change. Therefore, the dynamic model
of the system is static. Our next state estimate (prediction) equals the initialization:
x̂1,0 = x̂0,0 = 1000g

3.1.2.2 First Iteration

Step 1

Making the weight measurement with the scales:

z1 = 996g

3.1 Example 1 – Weighting the gold 45

Step 2

Calculating the gain. In our example αn = 1/n, thus:

α1 =
1

1
= 1

Calculating the current estimate using the State Update Equation:

x̂1,1 = x̂1,0 + α1 (z1 − x̂1,0) = 1000 + 1 (996− 1000) = 996g

R The initial guess could be any number in this specific example. Since α1 = 1,
the initial guess is eliminated in the first iteration.

Step 3

The dynamic model of the system is static; thus, the weight of the gold bar is not
supposed to change. Our next state estimate (prediction) equals to current state
estimate:

x̂2,1 = x̂1,1 = 996g

3.1.2.3 Second Iteration

After a unit time delay, the predicted estimate from the previous iteration becomes
the prior estimate in the current iteration:

x̂2,1 = 996g

Step 1

Making the second measurement of the weight:

z2 = 994g

Step 2

Calculating the gain:

α2 =
1

2

Calculating the current estimate:

x̂2,2 = x̂2,1 + α2 (z2 − x̂2,1) = 996 +
1

2
(994− 996) = 995g

Step 3

x̂3,2 = x̂2,2 = 995g

46 Chapter 3. The α− β − γ filter

3.1.2.4 Third Iteration

z3 = 1021g

α3 =
1

3

x̂3,3 = 995 +
1

3
(1021− 995) = 1003.67g

x̂4,3 = 1003.67g

3.1.2.5 Fourth Iteration

z4 = 1000g

α4 =
1

4

x̂4,4 = 1003.67 +
1

4
(1000− 1003.67) = 1002.75g

x̂5,4 = 1002.75g

3.1.2.6 Fifth Iteration

z5 = 1002g

α5 =
1

5

x̂5,5 = 1002.75 +
1

5
(1002− 1002.75) = 1002.6g

x̂6,5 = 1002.6g

3.1.2.7 Sixth Iteration

z6 = 1010g

α6 =
1

6

x̂6,6 = 1002.6 +
1

6
(1010− 1002.6) = 1003.83

x̂7,6 = 1003.83g

3.1 Example 1 – Weighting the gold 47

3.1.2.8 Seventh Iteration

z7 = 983g

α7 =
1

7

x̂7,7 = 1003.83 +
1

7
(983− 1003.83) = 1000.86g

x̂8,7 = 1000.86g

3.1.2.9 Eighth Iteration

z8 = 971g

α8 =
1

8

x̂8,8 = 1000.86 +
1

8
(971− 1000.86) = 997.125g

x̂9,8 = 997.125g

3.1.2.10 Ninth Iteration

z9 = 993g

α9 =
1

9

x̂9,9 = 997.125 +
1

9
(993− 997.125) = 996.67g

x̂10,9 = 996.67g

3.1.2.11 Tenth Iteration

z10 = 1023g

α10 =
1

10

x̂10,10 = 996.67 +
1

10
(1023− 996.67) = 999.3g

x̂11,10 = 999.3g

We can stop here. The gain decreases with each measurement. Therefore, the
contribution of each successive measurement is lower than the contribution of the
previous measurement. We get pretty close to the true weight, which is 1000g. If we
were making more measurements, we would get closer to the true value.

48 Chapter 3. The α− β − γ filter

The following table summarizes our measurements and estimates, and the chart
compares the measured values, the estimates, and the true value.

n 1 2 3 4 5 6 7 8 9 10

αn 1 α2 α3 α4 α5 α6 α7 α8 α9 α10

zn 996 994 1021 1000 1002 1010 983 971 993 1023

x̂n,n 996 995 1003.67 1002.75 1002.6 1003.83 1000.86 997.125 996.67 999.3

x̂n+1,n 996 995 1003.67 1002.75 1002.6 1003.83 1000.86 997.125 996.67 999.3

Table 3.2: Example 1 summary.

3.1.3 Results analysis
The following chart compares the true, measured, and estimated values.

Figure 3.6: Example 1: Measurements vs. True value vs. Estimates.

The estimation algorithm has a smoothing effect on the measurements and converges
toward the true value.

3.1.4 Example summary
In this example, we’ve developed a simple estimation algorithm for a static system.
We have also derived the state update equation, one of the five Kalman Filter
equations. We will revise the state update equation in subsection 4.1.4.

3.2 Example 2 – Tracking the constant velocity aircraft 49

3.2 Example 2 – Tracking the constant velocity aircraft
It is time to examine a dynamic system that changes its state over time. In this
example, we track a constant-velocity aircraft in one dimension using the α − β

filter. Let us assume a one-dimensional world. We assume an aircraft that is moving
radially away from the radar (or towards the radar). In the one-dimensional world,
the angle to the radar is constant, and the aircraft altitude is constant, as shown in
the following figure. The following chart compares the true, measured, and estimated
values.

Figure 3.7: 1D scenario.

xn represents the range to the aircraft at time n. The aircraft velocity can be
approximated using the range differentiation method - the change in the measured
range with time.

Thus, the velocity is a derivative of the range:

ẋ = v =
dx

dt
(3.4)

The radar sends a track beam in the direction of the target at a constant rate. The
track-to-track interval is ∆t.

Two motion equations describe the system dynamic model for constant velocity
motion:

xn+1 = xn +∆tẋn

ẋn+1 = ẋn

(3.5)

50 Chapter 3. The α− β − γ filter

According to Equation 3.5, the aircraft range at the next track cycle equals the range
at the current track cycle plus the target velocity multiplied by the track-to-track
interval. Since we assume constant velocity in this example, the velocity at the next
cycle equals the velocity at the current cycle.

The above system of equations is called a State Extrapolation Equation (also
called a Transition Equation or a Prediction Equation) and is also one of the
five Kalman filter equations. This system of equations extrapolates the current state
to the next state (prediction).

We have already used the State Extrapolation Equation in the previous example,
where we assumed that the weight at the next state equals the weight at the current
state.

The State Extrapolation Equations depend on the system dynamics and differ from
example to example.

There is a general form of the State Extrapolation Equation in matrix notation. We
learn it later.

In this example, we use the above equations specific to our case.

R We have already learned two of the five Kalman Filter equations:

• State Update Equation
• State Extrapolation Equation

Now we are going to modify the State Update Equation for our example.

3.2.1 The α− β filter
Let the radar track-to-track (∆t) period be 5 seconds. Assume that at time n−1, the
estimated range of the Unmanned Air Vehicle (UAV) is 30,000m, and the estimated
UAV velocity is 40m/s.

Using the State Extrapolation Equations, we can predict the target position at time
n:

x̂n,n−1 = x̂n−1,n−1 +∆tˆ̇xn−1,n−1 = 30000 + 5× 40 = 30200m

The target velocity prediction for time n:

ˆ̇xn,n−1 = ˆ̇xn−1,n−1 = 40m/s

However, at time n, the radar measures range (zn) of 30,110m and not 30,200m

3.2 Example 2 – Tracking the constant velocity aircraft 51

as expected. There is a 90m gap between the expected (predicted) range and the
measured range. There are two possible reasons for this gap:

• The radar measurements are not precise.
• The aircraft velocity has changed. The new aircraft velocity is: 30,110−30,000

5
=

22m/s.

Which of the two statements is true?

Let us write down the State Update Equation for the velocity:

ˆ̇xn,n = ˆ̇xn,n−1 + β

(
zn − x̂n,n−1

∆t

)
(3.6)

The value of the factor β depends on the precision level of the radar. Suppose that
the 1σ precision of the radar is 20m. The 90 meters gap between the predicted and
measured ranges most likely results from a change in the aircraft velocity. We should
set the β factor to a high value in this case. If we set β = 0.9, then the estimated
velocity would be:

ˆ̇xn,n = ˆ̇xn,n−1 + β

(
zn − x̂n,n−1

∆t

)
= 40 + 0.9

(
30110− 30200

5

)
= 23.8m/s

On the other hand, suppose that the 1σ precision of the radar is 150m. Then the 90
meters gap probably results from the radar measurement error. We should set the
β factor to a low value in this case. If we set β = 0.1, then the estimated velocity
would be:

ˆ̇xn,n = ˆ̇xn,n−1 + β

(
zn − x̂n,n−1

∆t

)
= 40 + 0.1

(
30110− 30200

5

)
= 38.2m/s

If the aircraft velocity has changed from 40m/s to 22m/s, we see this after 10 track
cycles (running the above equation 10 times with β = 0.1). If the gap has been
caused by measurement error, then the successive measurements would be in front
or behind the predicted positions. Thus on average, the target velocity would not
change.

The State Update Equation for the aircraft position is similar to the equation that
was derived in the previous example:

x̂n,n = x̂n,n−1 + α (zn − x̂n,n−1) (3.7)

Unlike the previous example, where the α factor is recalculated in each iteration

52 Chapter 3. The α− β − γ filter

(
αn = 1

n

)
, the α factor is constant in this example.

The magnitude of the α factor depends on the radar measurement precision. For high
precision-radar, we should choose high α, giving high weight to the measurements.
If α = 1, then the estimated range equals the measured range:

x̂n,n = x̂n,n−1 + 1 (zn − x̂n,n−1) = zn (3.8)

If α = 0 , then the measurement has no meaning:

x̂n,n = x̂n,n−1 + 0 (zn − x̂n,n−1) = x̂n,n−1 (3.9)

So, we have derived a system of equations that composes the State Update Equation
for the radar tracker. They are also called α− β track update equations or α− β

track filtering equations.

The State Update Equation for position and velocity

x̂n,n = x̂n,n−1 + α (zn − x̂n,n−1)

ˆ̇xn,n = ˆ̇xn,n−1 + β

(
zn − x̂n,n−1

∆t

)
(3.10)

R In some books, the α− β filter is called the g-h filter, where the Greek letter
α is replaced by the English letter g, and the English letter h replaces the
Greek letter β.

R In this example, we are deriving the aircraft velocity from the range measure-
ments (ẋ = ∆x

∆t). Modern radars can measure radial velocity directly using
the Doppler Effect. However, my goal is to explain the Kalman Filter, not the
radar operation. So, for the sake of generality, I will keep deriving the velocity
from the range measurements in our examples.

3.2 Example 2 – Tracking the constant velocity aircraft 53

3.2.2 Estimation Algorithm
The following chart depicts the estimation algorithm that is used in this example.

Figure 3.8: α− β filter estimation algorithm.

Unlike the previous example, the Gain values α and β are given for this example. For
the Kalman Filter, the α and β are replaced by Kalman Gain, which is calculated at
each iteration, but we learn it later.

Now we are ready to start a numerical example.

3.2.3 The numerical example
Consider an aircraft moving radially toward (or away from) a radar in a one-
dimensional world.

The α− β filter parameters are:

• α = 0.2

• β = 0.1

The track-to-track interval is 5 seconds.

R Note: In this example, we use an imprecise radar and a low-speed target (UAV)
for better graphical representation. The radars are usually more precise in real
life, and the targets can be much faster.

3.2.3.1 Iteration Zero

Initialization

The initial conditions for the time n = 0 are given:
x̂0,0 = 30000m

ˆ̇x0,0 = 40m/s

54 Chapter 3. The α− β − γ filter

R The Track Initiation (or how we get the initial conditions) is an important
topic that will be discussed in chapter 21. Right now, our goal is to understand
the basic α− β filter operation, so let’s assume that the initial conditions are
given by somebody else.

Prediction

The initial guess should be extrapolated to the first cycle using the State Extrapolation
Equations:
x̂n+1,n = x̂n,n +∆tˆ̇xn,n → x̂1,0 = x̂0,0 +∆tˆ̇x0,0 = 30000 + 5× 40 = 30200m

ˆ̇xn+1,n = ˆ̇xn,n → ˆ̇x1,0 = ˆ̇x0,0 = 40m/s

3.2.3.2 First Iteration

In the first cycle (n = 1), the initial guess is the prior estimate:
x̂n,n−1 = x̂1,0 = 30200m

ˆ̇xn,n−1 = ˆ̇x1,0 = 40m/s

Step 1

The radar measures the aircraft range:

z1 = 30171m

Step 2

Calculating the current estimate using the State Update Equation:
x̂1,1 = x̂1,0 + α (z1 − x̂1,0) = 30200 + 0.2 (30171− 30200) = 30194.2m

ˆ̇x1,1 = ˆ̇x1,0 + β

(
z1 − x̂1,0

∆t

)
= 40 + 0.1

(
30171− 30200

5

)
= 39.42m/s

Step 3

Calculating the next state estimate using the State Extrapolation Equations:
x̂2,1 = x̂1,1 +∆tˆ̇x1,1 = 30194.2 + 5× 39.42 = 30391.3m

ˆ̇x2,1 = ˆ̇x1,1 = 39.42m/s

3.2 Example 2 – Tracking the constant velocity aircraft 55

3.2.3.3 Second Iteration

After a unit time delay, the predicted estimate from the previous iteration becomes
the prior estimate in the current iteration:

x̂2,1 = 30391.3m

ˆ̇x2,1 = 39.42m/s

Step 1

The radar measures the aircraft range:

z2 = 30353m

Step 2

Calculating the current estimate using the State Update Equation:
x̂2,2 = x̂2,1 + α (z2 − x̂2,1) = 30391.3 + 0.2 (30353− 30391.3) = 30383.64m

ˆ̇x2,2 = ˆ̇x2,1 + β

(
z2 − x̂2,1

∆t

)
= 39.42 + 0.1

(
30353− 30391.3

5

)
= 38.65m/s

Step 3

Calculating the next state estimate using the State Extrapolation Equations:
x̂3,2 = x̂2,2 +∆tˆ̇x2,2 = 30383.64 + 5× 38.65 = 30576.9m

ˆ̇x3,2 = ˆ̇x2,2 = 38.65m/s

3.2.3.4 Third Iteration

z3 = 30756m

x̂3,3 = 30576.9 + 0.2 (30756− 30576.9) = 30612.73m

ˆ̇x3,3 = 38.65 + 0.1

(
30756− 30576.9

5

)
= 42.2m/s

x̂4,3 = 30612.73 + 5× 42.2 = 30823.9m

ˆ̇x4,3 = 42.2m/s

56 Chapter 3. The α− β − γ filter

3.2.3.5 Fourth Iteration

z4 = 30799m

x̂4,4 = 30823.9 + 0.2 (30799− 30823.9) = 30818.93m

ˆ̇x4,4 = 42.2 + 0.1

(
30799− 30823.9

5

)
= 41.7m/s

x̂5,4 = 30818.93 + 5× 41.7 = 31027.6m

ˆ̇x5,4 = 41.7m/s

3.2.3.6 Fifth Iteration

z5 = 31018m

x̂5,5 = 31027.6 + 0.2 (31018− 31027.6) = 31025.7m

ˆ̇x5,5 = 41.7 + 0.1

(
31018− 31027.6

5

)
= 41.55m/s

x̂6,5 = 31025.7 + 5× 41.55 = 31233.4m

ˆ̇x6,5 = 41.55m/s

3.2.3.7 Sixth Iteration

z6 = 31278m

x̂6,6 = 31233.4 + 0.2 (31278− 31233.4) = 31242.3m

ˆ̇x6,6 = 41.55 + 0.1

(
31278− 31233.4

5

)
= 42.44m/s

x̂7,6 = 31242.3 + 5× 42.44 = 31454.5m

ˆ̇x7,6 = 42.44m/s

3.2.3.8 Seventh Iteration

z7 = 31276m

x̂7,7 = 31454.5 + 0.2 (31276− 31454.5) = 31418.8m

ˆ̇x7,7 = 42.44 + 0.1

(
31276− 31454.5

5

)
= 38.9m/s

x̂8,7 = 31418.8 + 5× 38.9 = 31613.15m

ˆ̇x8,7 = 38.9m/s

3.2 Example 2 – Tracking the constant velocity aircraft 57

3.2.3.9 Eighth Iteration

z8 = 31379m

x̂8,8 = 31613.15 + 0.2 (31379− 31613.15) = 31566.3m

ˆ̇x8,8 = 38.9 + 0.1

(
31379− 31613.15

5

)
= 34.2m/s

x̂9,8 = 31566.3 + 5× 34.2 = 31737.24m

ˆ̇x9,8 = 34.2m/s

3.2.3.10 Ninth Iteration

z9 = 31748m

x̂9,9 = 31737.24 + 0.2 (31748− 31737.24) = 31739.4m

ˆ̇x9,9 = 34.2 + 0.1

(
31748− 31737.24

5

)
= 34.4m/s

x̂10,9 = 31739.4 + 5× 34.4 = 31911.4m

ˆ̇x10,9 = 34.4m/s

3.2.3.11 Tenth Iteration

z10 = 32175m

x̂10,10 = 31911.4 + 0.2 (32175− 31911.4) = 31964.1m

ˆ̇x10,10 = 34.4 + 0.1

(
32175− 31911.4

5

)
= 39.67m/s

x̂11,10 = 31964.1 + 5× 39.67 = 32162.45m

ˆ̇x11,10 = 39.67m/s

The following table summarizes our measurements and estimates.

n 1 2 3 4 5 6 7 8 9 10

zn 30171 30353 30756 30799 31018 31278 31276 31379 31748 32175

x̂n,n 30194.2 30383.64 30612.73 30818.93 31025.7 31242.3 31418.8 31566.3 31739.4 31964.1

˙̂xn,n 39.42 38.65 42.2 41.7 41.55 42.44 38.9 34.2 34.4 39.67

x̂n+1,n 30391.3 30576.9 30823.9 31027.6 31233.4 31454.5 31613.15 31737.24 31911.4 32162.45

˙̂xn+1,n 39.42 38.65 42.2 41.7 41.55 42.44 38.9 34.2 34.4 39.67

Table 3.3: Example 2 summary.

58 Chapter 3. The α− β − γ filter

3.2.4 Results analysis
The following chart compares the true values, measured values, and estimates.

Figure 3.9: Measurements vs. True value vs. Estimates - low Alpha and Beta.

Our estimation algorithm has a smoothing effect on the measurements and converges
toward the true value.

3.2.4.1 Using high α and β

The following chart depicts the true, measured, and estimated values for α = 0.8

and β = 0.5.

Figure 3.10: Measurements vs. True value vs. Estimates - high Alpha and Beta.

The “smoothing” degree of this filter is much lower. The “current estimate” is very

3.2 Example 2 – Tracking the constant velocity aircraft 59

close to the measured values, and predicted estimate errors are relatively high.

So, shall we always choose low values for α and β?

The answer is NO. The value of α and β should depend on the measurement precision.
If we use high-precision equipment, like laser radar, we would prefer a high α and
β that follow measurements. In this case, the filter would quickly respond to a
velocity change of the target. On the other hand, if measurement precision is low,
we prefer low α and β. In this case, the filter smoothes the uncertainty (errors) in
the measurements. However, the filter reaction to target velocity changes would be
much slower.

3.2.5 Example summary
We’ve derived the α − β filter state update equation. We’ve also learned the
State Extrapolation Equation. We’ve developed an estimation algorithm for a one-
dimensional dynamic system based on the α−β filter and solved a numerical example
for a constant velocity target.

60 Chapter 3. The α− β − γ filter

3.3 Example 3 – Tracking accelerating aircraft
In this example, we track an aircraft moving with constant acceleration with the
α− β filter.

In the previous example, we tracked a UAV moving at a constant velocity of 40m/s.
The following chart depicts the target range and velocity vs. time.

Figure 3.11: Constant Velocity Movement.

As you can see, the range function is linear.

Now let’s examine a fighter aircraft. This aircraft moves at a constant velocity of
50m/s for 20 seconds. Then the aircraft accelerates with a constant acceleration of
8m/s2 for another 35 seconds.

The following chart depicts the target range, velocity and acceleration vs. time.

3.3 Example 3 – Tracking accelerating aircraft 61

Figure 3.12: Accelerated Movement.

As you can see from the chart, the aircraft velocity is constant for the first 20 seconds
and then grows linearly. The range grows linearly for the first 20 seconds and then
grows quadratically. We are going to track this aircraft with the α − β filter that
was used in the previous example.

3.3.1 The numerical example
Consider an aircraft moving radially toward (or away from) a radar in a one-
dimensional world. The α− β filter parameters are:

• α = 0.2.
• β = 0.1.

The track-to-track interval is 5 seconds.

3.3.1.1 Iteration Zero

Initialization

The initial conditions for the time n = 0 are given:
x̂0,0 = 30000m

ˆ̇x0,0 = 50m/s

R The Track Initiation (or how we get the initial conditions) is an important
topic that will be discussed in chapter 21. Right now, our goal is to understand
the basic α− β filter operation, so let’s assume that the initial conditions are
given by somebody else.

62 Chapter 3. The α− β − γ filter

Prediction

The initial guess should be extrapolated to the first cycle using the State Extrapolation
Equations:
x̂n+1,n = x̂n,n +∆tˆ̇xn,n → x̂1,0 = x̂0,0 +∆tˆ̇x0,0 = 30000 + 5× 50 = 30250m

ˆ̇xn+1,n = ˆ̇xn,n → ˆ̇x1,0 = ˆ̇x0,0 = 50m/s

3.3.1.2 Iterations 1-10

All filter iterations are summarized in the following table:

Table 3.4: Example 3 filter iterations.

n zn

Current state estimates
(x̂n,n, ˆ̇xn,n)

Prediction (x̂n+1,n, ˆ̇xn+1,n)

1 30221m

x̂1,1 =

30250 + 0.2 (30221− 30250) =

30244.2m

ˆ̇x1,1 = 50 + 0.1
(
30221−30250

5

)
=

49.42m/s

x̂2,1 = 30244.2 + 5× 49.42 =

30491.3m

ˆ̇x2,1 = 49.42m/s

2 30453m

x̂2,2 = 30491.3 +

0.2 (30453− 30491.3) =

30483.64m

ˆ̇x2,2 = 49.42 +

0.1
(
30453−30491.3

5

)
= 48.65m/s

x̂3,2 = 30483.64 + 5× 48.65 =

30726.9m

ˆ̇x3,2 = 48.65m/s

3 30906m

x̂3,3 = 30726.9 +

0.2 (30906− 30726.9) =

30762.7m

ˆ̇x3,3 = 48.65 +

0.1
(
30906−30726.9

5

)
= 52.24m/s

x̂4,3 = 30762.7 + 5× 52.24 =

31023.9m

ˆ̇x4,3 = 52.24m/s

Continued on next page

3.3 Example 3 – Tracking accelerating aircraft 63

Table 3.4: Example 3 filter iterations. (Continued)

4 30999m

x̂4,4 = 31023.9 +

0.2 (30999− 31023.9) =

31018.93m

ˆ̇x4,4 = 52.24 +

0.1
(
30999−31023.9

5

)
= 51.74m/s

x̂5,4 = 31018.93 + 5× 51.74 =

31277.6m

ˆ̇x5,4 = 51.74m/s

5 31368m

x̂5,5 = 31277.6 +

0.2 (31368− 31277.6) =

31295.7m

ˆ̇x5,5 = 51.74 +

0.1
(
31368−31277.6

5

)
= 53.55m/s

x̂6,5 = 31295.7 + 5× 53.55 =

31563.4m

ˆ̇x6,5 = 53.55m/s

6 31978m

x̂6,6 = 31563.4 +

0.2 (31978− 31563.4) =

31646.3m

ˆ̇x6,6 = 53.55 +

0.1
(
31978−31563.4

5

)
= 61.84m/s

x̂7,6 = 31646.3 + 5× 61.84 =

31955.5m

ˆ̇x7,6 = 61.84m/s

7 32526m

x̂7,7 = 31955.5 +

0.2 (32526− 31955.5) =

32069.6m

ˆ̇x7,7 = 61.84 +

0.1
(
32526−31955.5

5

)
= 73.25m/s

x̂8,7 = 32069.6 + 5× 73.25 =

32435.85m

ˆ̇x8,7 = 73.25m/s

8 33379m

x̂8,8 = 32435.85 +

0.2 (33379− 32435.85) =

32624.5m

x̂8,8 = 32435.85 +

0.2 (33379− 32435.85) =

32624.5m

x̂9,8 = 32624.5 + 5× 92.1 =

33085m

ˆ̇x9,8 = 92.1m/s

Continued on next page

64 Chapter 3. The α− β − γ filter

Table 3.4: Example 3 filter iterations. (Continued)

9 34698m

x̂9,9 =

33085 + 0.2 (34698− 33085) =

33407.6m

ˆ̇x9,9 = 92.1 + 0.1
(
34698−33085

5

)
=

124.37m/s

x̂10,9 = 33407.6 + 5× 124.37 =

34029.5m

ˆ̇x10,9 = 124.37m/s

10 36275m

x̂10,10 = 34029.5 +

0.2 (36275− 34029.5) =

34478.6m

ˆ̇x10,10 = 124.37 +

0.1
(
36275−34029.5

5

)
= 169.28m/s

x̂11,10 = 34478.6 + 5× 169.28 =

35325m

ˆ̇x11,10 = 169.28m/s

3.3.2 Results analysis
The following charts compare the true, measured, and estimated values for the range
and velocity for the first 75 seconds.

Figure 3.13: Example 3 - range vs. time.

3.3 Example 3 – Tracking accelerating aircraft 65

Figure 3.14: Example 3 - velocity vs. time.

You can see a constant gap between true or measured values and estimates. The gap
is called a lag error. Other common names for the lag error are:

• Dynamic error
• Systematic error
• Bias error
• Truncation error

The lag error appears during the acceleration period. After the acceleration period,
the filter closes the gap and converges toward the true value. However, a significant
lag error can result in the target loss. The lag error is unacceptable in certain
applications, such as missile guidance or air defense.

3.3.3 Example summary
We’ve examined the lag error caused by target acceleration.

66 Chapter 3. The α− β − γ filter

3.4 Example 4 – Tracking accelerating aircraft using the

α− β − γ filter
In this example, we track an aircraft using the α−β−γ filter. The aircraft is moving
with a constant acceleration.

3.4.1 The α− β − γ filter
The α− β − γ filter (sometimes called g-h-k filter) considers a target acceleration.
Thus, the State Extrapolation Equations become:

The State Extrapolation Equations for position, velocity, and acceleration

x̂n+1,n = x̂n,n + ˆ̇xn,n∆t+ ˆ̈xn,n
∆t2

2

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n∆t

ˆ̈xn+1,n = ˆ̈xn,n

(3.11)

Where ẍn is acceleration (the second derivative of x).

The State Update Equations become:

The State Update Equations for position, velocity, and acceleration

x̂n,n = x̂n,n−1 + α (zn − x̂n,n−1)

ˆ̇xn,n = ˆ̇xn,n−1 + β

(
zn − x̂n,n−1

∆t

)

ˆ̈xn,n = ˆ̈xn,n−1 + γ

(
zn − x̂n,n−1

0.5∆t2

) (3.12)

3.4.2 The numerical example
Let’s take the scenario from the previous example: an aircraft that moves with
a constant velocity of 50m/s for 20 seconds and then accelerates with a constant
acceleration of 8m/s2 for another 35 seconds.

The α - β -γ filter parameters are:

• α = 0.5.

3.4 Example 4 – Tracking accelerating aircraft using the α− β − γ filter 67

• β = 0.4.
• γ = 0.1.

The track-to-track interval is 5 seconds.

R We use an imprecise radar and a low-speed target for better graphical repre-
sentation. The radars are usually more precise in real life, and the targets can
be much faster.

3.4.2.1 Iteration Zero

Initialization

The initial conditions for the time n = 0 are given:
x̂0,0 = 30000m

ˆ̇x0,0 = 50m/s

ˆ̈x0,0 = 0m/s2

Prediction

The initial guess should be extrapolated to the first cycle using the State Extrapolation
Equations:
x̂n+1,n = x̂n,n + ˆ̇xn,n∆t+ 0.5 ˆ̈xn,n∆t2 → x̂1,0 = x̂0,0 + ˆ̇x0,0∆t+ 0.5 ˆ̈x0,0∆t2

= 30000 + 50× 5 + 0.5× 0× 52 = 30250m

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n∆t → ˆ̇x1,0 = ˆ̇x0,0 + ˆ̈x0,0∆t = 50 + 0× 5 = 50m/s

ˆ̈xn+1,n = ˆ̈xn,n → ˆ̈x1,0 = ˆ̈x0,0 = 0m/s2

3.4.2.2 First Iteration

In the first cycle (n = 1), the initial guess is the prior estimate:
x̂n,n−1 = x̂1,0 = 30250m

ˆ̇xn,n−1 = ˆ̇x1,0 = 50m/s

ˆ̈xn,n−1 = ˆ̈x1,0 = 0m/s2

Step 1

The radar measures the aircraft range:

z1 = 30221m

68 Chapter 3. The α− β − γ filter

Step 2

Calculating the current estimate using the State Update Equation:
x̂1,1 = x̂1,0 + α (z1 − x̂1,0) = 30250 + 0.5 (30221− 30250) = 30235.5m

ˆ̇x1,1 = ˆ̇x1,0 + β

(
z1 − x̂1,0

∆t

)
= 50 + 0.4

(
30221− 30250

5

)
= 47.68m/s

ˆ̈x1,1 = ˆ̈x1,0 + γ

(
z1 − x̂1,0

0.5∆t2

)
= 0 + 0.1

(
30221− 30250

0.5× 52

)
= −0.23m/s2

Step 3

Calculating the next state estimate using the State Extrapolation Equations:
x̂2,1 = x̂1,1 + ˆ̇x1,1∆t+ 0.5 ˆ̈x1,1∆t2 = 30235.5 + 47.68× 5 + 0.5× (−0.23)× 52 = 30471m

ˆ̇x2,1 = ˆ̇x1,1 + ˆ̈x1,1∆t = 47.68 + (−0.23)× 5 = 46.52m/s

ˆ̈x2,1 = ˆ̈x1,1 = −0.23m/s2

3.4.2.3 Second Iteration

After a unit time delay, the predicted estimate from the foregoing iteration becomes
the prior estimate in the current iteration.
x̂2,1 = 30471m

ˆ̇x2,1 = 46.52m/s

ˆ̈x2,1 = −0.23m/s2

Step 1

The radar measures the aircraft range:

z2 = 30453m

Step 2

Calculating the current estimate using the State Update Equation:
x̂2,2 = x̂2,1 + α (z2 − x̂2,1) = 30471 + 0.5 (30453− 30471) = 30462m

ˆ̇x2,2 = ˆ̇x2,1 + β

(
z2 − x̂2,1

∆t

)
= 46.52 + 0.4

(
30453− 30471

5

)
= 45.08m/s

ˆ̈x2,2 = ˆ̈x2,1 + γ

(
z2 − x̂2,1

0.5∆t2

)
= −0.23 + 0.1

(
30453− 30471

0.5× 52

)
= −0.38m/s2

3.4 Example 4 – Tracking accelerating aircraft using the α− β − γ filter 69

Step 3

Calculating the next state estimate using the State Extrapolation Equations:

x̂3,2 = x̂2,2 + ˆ̇x2,2∆t+ 0.5 ˆ̈x2,2∆t2 = 30462 + 45.08× 5 + 0.5× (−0.38)× 52 = 30682.7m

ˆ̇x3,2 = ˆ̇x2,2 + ˆ̈x2,2∆t = 45.08 + (−0.38)× 5 = 43.2m/s

ˆ̈x3,2 = ˆ̈x2,2 = −0.38m/s2

3.4.2.4 Iterations 3-10

The calculations for the successive iterations are summarized in the following table:

Table 3.5: Example 4 filter iterations.

n zn

Current state estimates
(x̂n,n, ˆ̇xn,n, ˆ̈xn,n)

Prediction
(x̂n+1,n, ˆ̇xn+1,n, ˆ̈xn+1,n)

3 30906m

x̂3,3 = 30682.7 +

0.5 (30906− 30682.7) =

30794.35m

ˆ̇x3,3 = 43.2 +

0.4
(
30906−30682.7

5

)
= 61.06m/s

ˆ̈x3,3 = −0.38 +

0.1
(
30906−30682.7

0.5×52

)
= 1.41m/s2

x̂4,3 = 30794.35 + 5× 61.06 +

1.41× 52

2
= 31117.3m

ˆ̇x4,3 = 61.06 + 1.41× 5 =

68.1m/s

ˆ̈x4,3 = 1.41m/s2

4 30999m

x̂4,4 = 31117.3 +

0.5 (30999− 31117.3) =

31058.15m

ˆ̇x4,4 = 68.1 +

0.4
(
30999−31117.3

5

)
= 58.65m/s

ˆ̈x4,4 = 1.41 +

0.1
(
30999−31117.3

0.5×52

)
= 0.46m/s2

x̂5,4 = 31058.15 + 5× 58.65 +

0.46× 52

2
= 31357.2m

ˆ̇x5,4 = 58.65+0.46× 5 = 61m/s

ˆ̈x5,4 = 0.46m/s2

Continued on next page

70 Chapter 3. The α− β − γ filter

Table 3.5: Example 4 filter iterations. (Continued)

5 31368m

x̂5,5 = 31357.2 +

0.5 (31368− 31357.2) =

31362.6m

ˆ̇x5,5 = 61 + 0.4
(
31368−31357.2

5

)
=

61.8m/s

ˆ̈x5,5 = 0.46 +

0.1
(
31368−31357.2

0.5×52

)
= 0.55m/s2

x̂6,5 = 31362.6 + 5× 61.8 +

0.55× 52

2
= 31678.7m

ˆ̇x6,5 = 61.8+0.55×5 = 64.6m/s

ˆ̈x6,5 = 0.55m/s2

6 31978m

x̂6,6 = 31678.7 +

0.5 (31978− 31678.7) =

31828.3m

ˆ̇x6,6 = 64.6 +

0.4
(
31978−31678.7

5

)
= 88.5m/s

ˆ̈x6,6 = 0.55 +

0.1
(
31978−31678.7

0.5×52

)
= 2.95m/s2

x̂7,6 = 31828.3 + 5× 88.5 +

2.95× 52

2
= 32307.8m

ˆ̇x7,6 = 88.5 + 2.95× 5 =

103.26m/s

ˆ̈x7,6 = 2.95m/s2

7 32526m

x̂7,7 = 32307.8 +

0.5 (32526− 32307.8) =

32416.9m

ˆ̇x7,7 = 103.26 +

0.4
(
32526−32307.8

5

)
= 120.7m/s

ˆ̈x7,7 = 2.95 +

0.1
(
32526−32307.8

0.5×52

)
= 4.7m/s2

x̂8,7 = 32416.9 + 5× 120.7 +

4.7× 52

2
= 33079.1m

ˆ̇x8,7 = 120.7 + 4.7× 5 =

144.17m/s

ˆ̈x8,7 = 4.7m/s2

Continued on next page

3.4 Example 4 – Tracking accelerating aircraft using the α− β − γ filter 71

Table 3.5: Example 4 filter iterations. (Continued)

8 33379m

x̂8,8 = 33079.1 +

0.5 (33379− 33079.1) =

33229.05m

ˆ̇x8,8 = 144.17 +

0.4
(
33379−33079.1

5

)
= 168.2m/s

ˆ̈x8,8 = 4.7 + 0.1
(
33379−33079.1

0.5×52

)
=

7.1m/s2

x̂9,8 = 33229.05 + 5× 168.2 +

7.1× 52

2
= 34158.5m

ˆ̇x9,8 = 168.2 + 7.1× 5 =

203.6m/s

ˆ̈x9,8 = 7.1m/s2

9 34698m

x̂9,9 = 34158.5 +

0.5 (34698− 34158.5) =

34428.2m

ˆ̇x9,9 = 203.6 +

0.4
(
34698−34158.5

5

)
= 246.8m/s

ˆ̈x9,9 = 7.1 + 0.1
(
34698−34158.5

0.5×52

)
=

11.4m/s2

x̂10,9 = 34428.2 + 5× 246.8 +

11.4× 52

2
= 35804.7m

ˆ̇x10,9 = 246.8 + 11.4× 5 =

303.8m/s

ˆ̈x10,9 = 11.4m/s2

10 36275m

x̂10,10 = 35804.7 +

0.5 (36275− 35804.7) =

36039.8m

ˆ̇x10,10 = 303.8 +

0.4
(
36275−35804.7

5

)
= 341.4m/s

ˆ̈x10,10 = 11.4 +

0.1
(
36275−35804.7

0.5×52

)
= 15.2m/s2

x̂11,10 = 36039.8 + 5× 341.4 +

15.2× 52

2
= 37936.6m

ˆ̇x11,10 = 341.4 + 15.2× 5 =

417.3m/s

ˆ̈x11,10 = 15.2m/s2

72 Chapter 3. The α− β − γ filter

3.4.3 Results analysis
The following charts compare the true, measured, and estimated values for the range,
velocity, and acceleration for the first 50 seconds.

Figure 3.15: Example 4: Range vs. Time.

Figure 3.16: Example 4: Velocity vs. Time.

3.5 Summary of the α− β − (γ) filter 73

Figure 3.17: Example 4: Acceleration vs. Time.

3.5 Summary of the α− β − (γ) filter
There are many types of α−β− (γ) filters, and they are based on the same principle:

• The current state estimation is based on the state update equations.
• The following state estimation (prediction) is based on the dynamic model

equations.

The main difference between these filters is the selection of weighting coefficients
α− β − (γ). Some filter types use constant weighting coefficients; others compute
weighting coefficients for every filter iteration (cycle).

The choice of the α, β and γ is crucial for proper functionality of the estimation
algorithm.

What should be the α− β − (γ) parameters?

I described the α− β − (γ) filter as an introductory to the Kalman Filter, thus, I
won’t cover this topic. The curious reader can find many books and papers on this
topic [2], [3].

Another important issue is the initiation of the filter (chapter 21), i.e., providing the
initial value for the first filter iteration.

The following list includes the most popular α− β − (γ) filters:

74 Chapter 3. The α− β − γ filter

• Wiener Filter
• Bayes Filter
• Fading-memory polynomial Filter
• Expanding-memory (or growing-memory) polynomial Filter
• Least-squares Filter
• Benedict–Bordner Filter
• Discounted least-squares α− β Filter
• Critically damped α− β Filter
• Growing-memory Filter
• Kalman Filter
• Extended Complex Kalman Filter
• Gauss-Hermite Kalman Filter
• Cubature Kalman Filter
• Particle Filter

I hope to write about some of these filters. But this book is about the Kalman Filter,
which is the topic of the following examples.

4. Kalman Filter in one dimension

In this chapter, we derive the Kalman Filter in one dimension. The main goal of
this chapter is to explain the Kalman Filter concept simply and intuitively without
using math tools that may seem complex and confusing.

We are going to advance toward the Kalman Filter equations step by step.

In this chapter, we derive the Kalman Filter equations without process noise. In the
following chapter, we add process noise.

4.1 One-dimensional Kalman Filter without process noise
As I mentioned earlier, the Kalman Filter is based on five equations. We are already
familiar with two of them:

• The state update equation
• The dynamic model equation

In this chapter, we derive another three Kalman Filter Equations and revise the
state update equation.

Like the α− β − (γ) filter, the Kalman filter utilizes the “Measure, Update, Predict”
algorithm.

Contrary to the α− β − (γ) filter, the Kalman Filter treats measurements, current
state estimation, and next state estimation (predictions) as normally distributed
random variables. The random variable is described by mean and variance.

The following chart provides a low-level schematic description of the Kalman Filter
algorithm:

76 Chapter 4. Kalman Filter in one dimension

Figure 4.1: Schematic description of the Kalman Filter algorithm.

Let’s recall our first example (Example 1 – Weighting the gold); We made multiple
measurements and computed the estimate by averaging.

We obtained the following result:

Figure 4.2: Example 1: Measurements vs. True value vs. Estimates.

Figure 4.2 shows the true, measured, and estimated values vs. the number of
measurements.

4.1 One-dimensional Kalman Filter without process noise 77

4.1.1 Estimate as a random variable
The difference between the estimates (the red line) and the true values (the green
line) is the estimate error. As you can see, the estimate error becomes lower as we
make additional measurements, and it converges towards zero, while the estimated
value converges towards the true value. We don’t know the estimate error, but we
can estimate the state uncertainty.

We denote the state estimate variance by p.

4.1.2 Measurement as a random variable
The measurement errors are the differences between the measurements (blue samples)
and the true values (green line). Since the measurement errors are random, we can
describe them by variance (σ2). The standard deviation (σ) of the measurement
errors is the measurement uncertainty.

R In some literature, the measurement uncertainty is also called the measure-
ment error.

We denote the measurement variance by r.

The variance of the measurement errors could be provided by the measurement
equipment vendor, calculated, or derived empirically by a calibration procedure.

For example, when using scales, we can calibrate the scales by making multiple
measurements of an item with a known weight and empirically derive the standard
deviation. The scales vendor can also supply the measurement uncertainty parameter.

For advanced sensors like radar, the measurement uncertainty depends on several
parameters such as Signal to Noise Ratio (SNR), beam width, bandwidth, time on
target, clock stability, and more. Every radar measurement has a different SNR,
beam width, and time on target. Therefore, the radar calculates the uncertainty of
each measurement and reports it to the tracker.

Let’s look at the weight measurements Probability Density Function (PDF). The
following plot shows ten measurements of the gold bar weight.

• The blue circles describe the measurements.
• The true values are described by the red dashed line.
• The green line describes the probability density function of the measurement.
• The bold green area is the standard deviation (σ) of the measurement, i.e.,

there is a probability of 68.26% that the measurement value lies within this
area.

78 Chapter 4. Kalman Filter in one dimension

As you can see, 7 out of 10 measurements are within 1σ boundaries.

Figure 4.3: Measurements Probability Density Function.

4.1.3 State prediction
In the first example - “The measurement of the gold bar weight” (section 3.1), the
dynamic model is constant:

x̂n+1,n = x̂n,n (4.1)

In the second example - “Tracking the constant velocity aircraft” (section 3.2), we
extrapolated the current state (target position and velocity) to the next state using
motion equations:

x̂n+1,n = x̂n,n +∆tˆ̇xn,n

ˆ̇xn+1,n = ˆ̇xn,n

(4.2)

i.e., the predicted position equals the current estimated position plus the currently
estimated velocity multiplied by the time. The predicted velocity equals the current
velocity estimate (assuming a constant velocity model).

The dynamic model equation depends on the system.

Since Kalman Filter treats the estimate as a random variable, we must also extrapolate
the estimation variance (pn,n) to the next state.

4.1 One-dimensional Kalman Filter without process noise 79

Figure 4.4: State Prediction Illustration.

In the first example - “The measurement of the gold bar weight” (section 3.1),
the dynamic model of the system is constant. Thus, the estimate uncertainty
extrapolation would be:

The estimate uncertainty extrapolation for a constant dynamics

p̂n+1,n = p̂n,n (4.3)

Where p is the estimate variance of the gold bar weight.

In the second example - “Tracking the constant velocity aircraft” (section 3.2), the
estimate uncertainty extrapolation would be:

The estimate uncertainty extrapolation for a constant velocity dynamics

pxn+1,n = pxn,n +∆t2 · pvn,n
pvn+1,n = pvn,n

(4.4)

Where:
px is the position estimate variance.
pv is the velocity estimate variance.

i.e., the predicted position estimate variance equals the current position estimate
variance plus the current velocity estimate variance multiplied by the time squared.
The predicted velocity estimate variance equals the current velocity estimate variance

80 Chapter 4. Kalman Filter in one dimension

(assuming a constant velocity model).

Note that for any normally distributed random variable x with variance σ2, kx is
distributed normally with variance k2σ2, therefore the time term in the uncertainty
extrapolation equation is squared. You can find a detailed explanation in Appendix A.

The estimate uncertainty extrapolation equation is called the Covariance Extrapola-
tion Equation, which is the third Kalman Filter equation. Why covariance? We will
see this in Part II - Multivariate Kalman Filter.

4.1.4 State update
To estimate the current state of the system, we combine two random variables:

• The prior state estimate (the current state estimate predicted at the previous
state).

• The measurement.

Figure 4.5: State Update Illustration.

The Kalman Filter is an optimal filter. It combines the prior state estimate with the
measurement in a way that minimizes the uncertainty of the current state estimate.

The current state estimate is a weighted mean of the measurement and the prior

4.1 One-dimensional Kalman Filter without process noise 81

state estimate:

x̂n,n = w1zn + w2x̂n,n−1

w1 + w2 = 1
(4.5)

Where w1 and w2 are the weights of the measurement and the prior state estimate.

We can write x̂n,n as follows:

x̂n,n = w1zn + (1− w1)x̂n,n−1 (4.6)

The relation between variances is given by:

pn,n = w2
1rn + (1− w1)

2pn,n−1 (4.7)

Where:

pn,n is the variance of the optimum combined estimate
pn,n−1 is the variance of the prior estimate x̂n,n−1

rn is the variance of the measurement zn

Remember that for any normally distributed random variable x with variance σ2, kx
is distributed normally with variance k2σ2. You can find a detailed explanation in
Appendix A.

Since we are looking for an optimum estimate, we want to minimize pn,n.

To find w1 that minimizes pn,n, we differentiate pn,n with respect to w1 and set the
result to zero.

dpn,n
dw1

= 2w1rn − 2(1− w1)pn,n−1 = 0 (4.8)

Hence

w1rn = pn,n−1 − w1pn,n−1

w1pn,n−1 + w1rn = pn,n−1

w1 =
pn,n−1

pn,n−1 + rn

(4.9)

82 Chapter 4. Kalman Filter in one dimension

Let us substitute the result into the current state estimation x̂n,n

x̂n,n = w1zn+(1−w1)x̂n,n−1 = w1zn+x̂n,n−1−w1x̂n,n−1 = x̂n,n−1+w1 (zn − x̂n,n−1)

(4.10)

State Update Equation

x̂n,n = x̂n,n−1 +
pn,n−1

pn,n−1 + rn
(zn − x̂n,n−1) (4.11)

We have derived an equation that looks similar to the α− β − (γ) filter state update
equation (Equation 3.2). The weight of the innovation is called the Kalman Gain
(denoted by Kn).

The Kalman Gain Equation is the fourth Kalman Filter equation. In one
dimension, the Kalman Gain Equation is the following:

State Update Equation

Kn =
V ariance in Estimate

V ariance in Estimate + V ariance in Measurement

Kn =
pn,n−1

pn,n−1 + rn
(4.12)

Where:

pn,n−1 is the extrapolated estimate variance
rn is the measurement variance

The Kalman Gain is a number between zero and one:

0 ≤ Kn ≤ 1 (4.13)

Finally, we need to find the variance of the current state estimate. We’ve seen that
the relation between variances is given by:

4.1 One-dimensional Kalman Filter without process noise 83

pn,n = w2
1rn + (1− w1)

2 pn,n−1 (4.14)

The weight w1 is a Kalman Gain:

pn,n = K2
nrn + (1−Kn)

2 pn,n−1 (4.15)

Let us find the (1−Kn) term:

(1−Kn) =

(
1− pn,n−1

pn,n−1 + rn

)
=

(
pn,n−1 + rn − pn,n−1

pn,n−1 + rn

)
=

(
rn

pn,n−1 + rn

)
(4.16)

Equation Notes

pn,n =

(
pn,n−1

pn,n−1 + rn

)2

rn +

(
rn

pn,n−1 + rn

)2

pn,n−1 Substitute Kn and (1−Kn)

=
p2n,n−1rn

(pn,n−1 + rn)
2 +

r2npn,n−1

(pn,n−1 + rn)
2 Expand

=
pn,n−1rn

pn,n−1 + rn

(
pn,n−1

pn,n−1 + rn
+

rn

pn,n−1 + rn

)

= (1−Kn) pn,n−1

(
Kn + (1−Kn)

)
Substitute Kn and (1−Kn)

= (1−Kn) pn,n−1

Table 4.1: Covariance update equation derivation.

This equation updates the estimate variance of the current state. It is called the
Covariance Update Equation.

84 Chapter 4. Kalman Filter in one dimension

Covariance Update Equation

pn,n = (1−Kn) pn,n−1 (4.17)

It is clear from the equation that the estimate uncertainty is constantly decreasing
with each filter iteration, since (1−Kn) ≤ 1. When the measurement uncertainty is
high, the Kalman gain is low. Therefore, the convergence of the estimate uncertainty
would be slow. On the other hand, the Kalman gain is high when the measurement
uncertainty is low. Therefore, the estimate uncertainty would quickly converge
toward zero.

So, it is up to us to decide how many measurements to make. If we are measuring a
building height, and we are interested in a precision of 3 centimeters (σ), we should
make measurements until the state estimate variance (σ2) is less than 9 centimeters2.

4.1.5 Putting all together
This section combines all of these pieces into a single algorithm.

The filter inputs are:

• Initialization
The initialization is performed only once, and it provides two parameters:

– Initial System State (x̂0,0)
– Initial State Variance (p0,0)

The initialization parameters can be provided by another system, another
process (for instance, a search process in radar), or an educated guess based
on experience or theoretical knowledge. Even if the initialization parameters
are not precise, the Kalman filter can converge close to the true value.

• Measurement
The measurement is performed for every filter cycle, and it provides two
parameters:

– Measured System State (zn)
– Measurement Variance (rn)

The filter outputs are:

• System State Estimate (x̂n,n)
• Estimate Variance (pn,n)

4.1 One-dimensional Kalman Filter without process noise 85

The following table summarizes the five Kalman Filter equations.

Equation Equation Name
Alternative names

used in the literature

State
Update

x̂n,n = x̂n,n−1 +Kn(zn − x̂n,n) State Update Filtering Equation

pn,n = (1−Kn)pn,n−1 Covariance Update Corrector Equation

Kn =
pn,n−1

pn,n−1 + rn
Kalman Gain Weight Equation

State
Predict

x̂n+1,n = x̂n,n

(for constant dynamics)

x̂n+1,n = x̂n,n +∆tˆ̇xn,n

ˆ̇xn+1,n = ˆ̇xn,n

(for constant velocity dynamics)

State

Extrapolation

Predictor Equation

Transition Equation

Prediction Equation

Dynamic Model

State Space Model

pxn+1,n = pxn,n

(for constant dynamics)

pxn+1,n = pxn,n +∆t2pvn,n

pvn+1,n = pvn,n

(for constant velocity dynamics)

Covariance

Extrapolation

Predictor Covariance

Equation

Table 4.2: Kalman Filter equations in one dimension.

R The equations above don’t include the process noise. In the following chapter,
we add process noise.

R The State Extrapolation Equation and the Covariance Extrapolation Equation
depend on the system dynamics.

R The table above demonstrates a special form of the Kalman Filter equations
tailored for a specific case. The general form of the equation in matrix notation
is presented in Part II.

The following figure provides a detailed description of the Kalman Filter’s block
diagram.

86 Chapter 4. Kalman Filter in one dimension

Figure 4.6: Detailed description of the Kalman Filter algorithm.

• Step 0: Initialization
As mentioned above, the initialization is performed only once, and it provides
two parameters:

– Initial System State (x̂0,0)
– Initial State Variance (p0,0)

The initialization is followed by prediction.
• Step 1: Measurement

The measurement process provides two parameters:
– Measured System State (zn)
– Measurement Variance (rn)

• Step 2: State Update
The state update process is responsible for the state estimation of the current
state of the system.
The state update process inputs are:

– Measured Value (zn)
– A Measurement Variance (rn)
– A prior Predicted System State Estimate (x̂n,n−1)
– A prior Predicted System State Estimate Variance (pn,n−1)

Based on the inputs, the state update process calculates the Kalman Gain and
provides two outputs:

4.1 One-dimensional Kalman Filter without process noise 87

– Current System State Estimate (x̂n,n)
– Current State Estimate Variance (pn,n)

These parameters are the Kalman Filter outputs.
• Step 3: Prediction

The prediction process extrapolates the current system state estimate and its
variance to the next system state based on the dynamic model of the system.
At the first filter iteration, the initialization is treated as the Prior State
Estimate and Variance. The prediction outputs are used as the Prior (predicted)
State Estimate and Variance on the following filter iterations.

4.1.6 Kalman Gain intuition
Let’s rewrite the state update equation:

x̂n,n = x̂n,n−1 +Kn (zn − x̂n,n−1) = (1−Kn) x̂n,n−1 +Knzn (4.18)

As you can see, the Kalman Gain (Kn) is the measurement weight, and the (1−Kn)

term is the weight of the current state estimate.

The Kalman Gain is close to zero when the measurement uncertainty is high and
the estimate uncertainty is low. Hence we give a significant weight to the estimate
and a small weight to the measurement.

On the other hand, when the measurement uncertainty is low, and the estimate
uncertainty is high, the Kalman Gain is close to one. Hence we give a low weight to
the estimate and a significant weight to the measurement.

If the measurement uncertainty equals the estimate uncertainty, then the Kalman
gain equals 0.5.

The Kalman Gain Defines the measurement’s weight and the prior estimate’s weight
when forming a new estimate. It tells us how much the measurement changes the
estimate.

88 Chapter 4. Kalman Filter in one dimension

4.1.6.1 High Kalman Gain

A low measurement uncertainty relative to the estimate uncertainty would result in
a high Kalman Gain (close to 1). Therefore the new estimate would be close to the
measurement. The following figure illustrates the influence of a high Kalman Gain
on the estimate in an aircraft tracking application.

Figure 4.7: High Kalman Gain.

4.1 One-dimensional Kalman Filter without process noise 89

4.1.6.2 Low Kalman Gain

A high measurement uncertainty relative to the estimate uncertainty would result in
a low Kalman Gain (close to 0). Therefore the new estimate would be close to the
prior estimate. The following figure illustrates the influence of a low Kalman Gain
on the estimate in an aircraft tracking application.

Figure 4.8: Low Kalman Gain.

Now we understand the Kalman Filter algorithm and are ready for the first numerical
example.

90 Chapter 4. Kalman Filter in one dimension

4.2 Example 5 – Estimating the height of a building
Assume that we would like to estimate the height of a building using an imprecise
altimeter.

We know that building height doesn’t change over time, at least during the short
measurement process.

Figure 4.9: Estimating the building height.

4.2.1 The numerical example
• The true building height is 50 meters.
• The altimeter measurement error (standard deviation) is 5 meters.
• The ten measurements are: 49.03m, 48.44m, 55.21m, 49.98m, 50.6m, 52.61m,

45.87m, 42.64m, 48.26m, 55.84m.

4.2.1.1 Iteration Zero

Initialization

One can estimate the height of the building simply by looking at it.

The estimated height of the building for the initialization purpose is:

x̂0,0 = 60m

Now we shall initialize the estimate variance. A human estimation error (standard
deviation) is about 15 meters: σ = 15 . Consequently the variance is 225: σ2 = 225.

4.2 Example 5 – Estimating the height of a building 91

p0,0 = 225

Prediction

Now, we shall predict the next state based on the initialization values.

Since our system’s Dynamic Model is constant, i.e., the building doesn’t change its
height:

x̂1,0 = x̂0,0 = 60m

The extrapolated estimate variance also doesn’t change:

p1,0 = p0,0 = 225

4.2.1.2 First Iteration

Step 1 - Measure

The first measurement is:

z1 = 49.03m

Since the standard deviation (σ) of the altimeter measurement error is 5, the variance
(σ2) would be 25, thus, the measurement uncertainty is: r2 = 25.

Step 2 - Update

Kalman Gain calculation:

K1 =
p1,0

p1,0 + r1
=

225

225 + 25
= 0.9

Estimating the current state:

x̂1,1 = x̂1,0 +K1 (z1 − x̂1,0) = 60 + 0.9 (49.03− 60) = 50.13m

Update the current estimate variance:

p1,1 = (1−K1) p1,0 = (1− 0.9) 225 = 22.5

Step 3 - Predict

Since the dynamic model of our system is constant, i.e., the building doesn’t change
its height:

x̂2,1 = x̂1,1 = 50.13m

The extrapolated estimate variance also doesn’t change:

p2,1 = p1,1 = 22.5

92 Chapter 4. Kalman Filter in one dimension

4.2.1.3 Second Iteration

After a unit time delay, the predicted estimate from the previous iteration becomes
the prior estimate in the current iteration:

x̂2,1 = 50.13m

The extrapolated estimate variance becomes the prior estimate variance:

p2,1 = 22.5

Step 1 - Measure

The second measurement is:

z2 = 48.44m

The measurement variance is:

r2 = 25

Step 2 - Update

Kalman Gain calculation:

K2 =
p2,1

p2,1 + r2
=

22.5

22.5 + 25
= 0.47

Estimating the current state:

x̂2,2 = x̂2,1 +K2 (z2 − x2,1) = 50.13 + 0.47 (48.44− 50.13) = 49.33m

Update the current estimate variance:

p2,2 = (1−K2) p2,1 = (1− 0.47) 22.5 = 11.84

Step 3 - Predict

Since the dynamic model of our system is constant, i.e., the building doesn’t change
its height:

x̂3,2 = x̂2,2 = 49.33m

The extrapolated estimate variance also doesn’t change:

p3,2 = p2,2 = 11.84

4.2.1.4 Iterations 3-10

The calculations for the subsequent iterations are summarized in the following table:

4.2 Example 5 – Estimating the height of a building 93

Table 4.3: Example 5 filter iterations.

n zn

Current state estimates
(Kn, x̂n,n, pn,n)

Prediction
(x̂n+1,n, pn+1,n)

3 55.21m

K3 =
11.84

11.84 + 25
= 0.32

x̂3,3 = 49.33 +

0.32 (55.21− 49.33) = 51.22m

p3,3 = (1− 0.32) 11.84 = 8.04

x̂4,3 = x̂3,3 = 51.22m

p4,3 = p3,3 = 8.04

4 49.98m

K4 =
8.04

8.04 + 25
= 0.24

x̂4,4 = 51.22 +

0.24 (49.98− 51.22) = 50.92m

p4,4 = (1− 0.24) 8.04 = 6.08

x̂5,4 = x̂4,4 = 50.92m

p5,4 = p4,4 = 6.08

5 50.6m

K5 =
6.08

6.08 + 25
= 0.2

x̂5,5 = 50.92 +

0.2 (50.6− 50.92) = 50.855m

p5,5 = (1− 0.2) 6.08 = 4.89

x̂6,5 = x̂5,5 = 50.855m

p6,5 = p5,5 = 4.89

6 52.61m

K6 =
4.89

4.89 + 25
= 0.16

x̂6,6 = 50.855 +

0.16 (52.61− 50.855) = 51.14m

p6,6 = (1− 0.16) 4.89 = 4.09

x̂7,6 = x̂6,6 = 51.14m

p7,6 = p6,6 = 4.09

Continued on next page

94 Chapter 4. Kalman Filter in one dimension

Table 4.3: Example 5 filter iterations. (Continued)

7 45.87m

K7 =
4.09

4.09 + 25
= 0.14

x̂7,7 = 51.14 +

0.14 (45.87− 51.14) = 50.4m

p7,7 = (1− 0.14) 4.09 = 3.52

x̂8,7 = x̂7,7 = 50.4m

p8,7 = p7,7 = 3.52

8 42.64m

K8 =
3.52

3.52 + 25
= 0.12

x̂8,8 = 50.4 +

0.12 (42.64− 50.4) = 49.44m

p8,8 = (1− 0.12) 3.52 = 3.08

x̂9,8 = x̂8,8 = 49.44m

p9,8 = p8,8 = 3.08

9 48.26m

K9 =
3.08

3.08 + 25
= 0.11

x̂9,9 = 49.44 +

0.11 (48.26− 49.44) = 49.31m

p9,9 = (1− 0.11) 3.08 = 2.74

x̂10,9 = x̂9,9 = 49.31m

p10,9 = p9,9 = 2.74

10 55.84m

K10 =
2.74

2.74 + 25
= 0.1

x̂10,10 = 49.31 +

0.1 (55.84− 49.31) = 49.96m

p10,10 = (1− 0.1) 2.74 = 2.47

x̂11,10 = x̂10,10 = 49.96m

p11,10 = p10,10 = 2.47

4.2 Example 5 – Estimating the height of a building 95

4.2.2 Results analysis
First of all, we want to ensure Kalman Filter convergence. The Kalman Gain should
gradually decrease until it reaches a steady state. When Kalman Gain is low, the
weight of the noisy measurements is also low. The following plot describes the
Kalman Gain for the first one hundred iterations of the Kalman Filter.

Figure 4.10: Example 5: the Kalman Gain.

We can see a significant reduction in the Kalman Gain during the first ten iterations.
The Kalman Gain enters a steady state after approximately fifty iterations.

We also want to examine accuracy. Accuracy indicates how close the measurement
is to the true value. Figure 4.11 compares the true value, measured values, and
estimates for the first 50 iterations.

An estimation error is a difference between the true values (the green line) and the
KF estimates (the red line). We can see that the estimation errors of our KF decrease
in the filter convergence region.

96 Chapter 4. Kalman Filter in one dimension

Figure 4.11: Example 5: True value, measured values and estimates.

One can define accuracy criteria based on the specific application requirements. The
typical accuracy criteria are:

• Maximum error
• Mean error
• Root Mean Square Error (RMSE)

Another important parameter is estimation uncertainty. We want the Kalman
Filter (KF) estimates to be precise; therefore, we are interested in low estimation
uncertainty.

Assume that for a building height measurement application, there is a requirement
for 95% confidence. The following chart shows the KF estimates and the true values
with 95% confidence intervals.

4.2 Example 5 – Estimating the height of a building 97

Figure 4.12: High uncertainty.

You can find the guidelines for a confidence interval calculation in Appendix B.

In the above chart, the confidence intervals are added to the estimates (the red line).
95% of the green samples should be within the 95% confidence region.

We can see that the uncertainty is too high. Let us decrease the measurement
uncertainty. The following chart describes the KF output for a low measurement
uncertainty parameter.

Figure 4.13: Low uncertainty.

Although we’ve decreased the uncertainty of the estimates, many green samples

98 Chapter 4. Kalman Filter in one dimension

are outside the 95% confidence region. The Kalman Filter is overconfident and too
optimistic about its accuracy.

Let us find the measurement uncertainty that yields the desired estimate uncertainty.

Figure 4.14: Normal uncertainty.

The above chart shows that 2 out of 50 samples slightly exceed the 95% confidence
region. This performance satisfies our requirements.

4.2.3 Example summary
We measured the building height using the one-dimensional Kalman Filter in this
example. Unlike the α− β − (γ) filter, the Kalman Gain is dynamic and depends on
the precision of the measurement device.

The initial value used by the Kalman Filter is not precise. Therefore, the measurement
weight in the State Update Equation is high, and the estimate uncertainty is high.

With each iteration, the measurement weight is lower; therefore, the estimate uncer-
tainty is lower.

The Kalman Filter output includes the estimate and the estimate uncertainty.

5. Adding process noise

In this chapter, we add process noise to the one-dimensional Kalman Filter model.

5.1 The complete model of the one-dimensional Kalman

Filter

5.1.1 The Process Noise
In the real world, there are uncertainties in the system dynamic model. For example,
when we want to estimate the resistance value of the resistor, we assume a constant
dynamic model, i.e., the resistance doesn’t change between the measurements. How-
ever, the resistance can change slightly due to the fluctuation of the environment
temperature. When tracking ballistic missiles with radar, the uncertainty of the
dynamic model includes random changes in the target acceleration. The uncertainties
are much more significant for an aircraft due to possible aircraft maneuvers.

On the other hand, when we estimate the location of a static object using a Global
Positioning System (GPS) receiver, the uncertainty of the dynamic model is zero
since the static object doesn’t move. The uncertainty of the dynamic model is
called the Process Noise. In the literature, it is also called plant noise, driving
noise, dynamics noise, model noise, and system noise. The process noise produces
estimation errors.

In the previous example, we estimated the height of the building. Since the building
height doesn’t change, we didn’t consider the process noise.

The Process Noise Variance is denoted by the letter q.

The Covariance Extrapolation Equation shall include the Process Noise
Variance.

The Covariance Extrapolation Equation for constant dynamics is:

pn+1,n = pn,n + qn (5.1)

100 Chapter 5. Adding process noise

These are the updated Kalman Filter equations in one dimension:

Equation Equation Name
Alternative names

used in the literature

State
Update

x̂n,n = x̂n,n−1 +Kn(zn − x̂n,n) State Update Filtering Equation

pn,n = (1−Kn)pn,n−1 Covariance Update Corrector Equation

Kn =
pn,n−1

pn,n−1 + rn
Kalman Gain Weight Equation

State
Predict

x̂n+1,n = x̂n,n

(for constant dynamics)

x̂n+1,n = x̂n,n +∆tˆ̇xn,n

ˆ̇xn+1,n = ˆ̇xn,n

(for constant velocity dynamics)

State

Extrapolation

Predictor Equation

Transition Equation

Prediction Equation

Dynamic Model

State Space Model

pxn+1,n = pxn,n + qn

(for constant dynamics)

pxn+1,n = pxn,n +∆t2pvn,n

pvn+1,n = pvn,n + qn

(for constant velocity dynamics)

Covariance

Extrapolation

Predictor Covariance

Equation

Table 5.1: Kalman Filter equations in one dimension with process noise.

R The State Extrapolation Equation and the Covariance Extrapolation Equation
depend on the system dynamics.

R The table above demonstrates the special form of the Kalman Filter equations
tailored for the specific case. The general form of the equation is presented
later in matrix notation. For now, our goal is to understand the concept of
the Kalman Filter.

5.2 Example 6 – Estimating the temperature of the liquid in a tank 101

5.2 Example 6 – Estimating the temperature of the liquid

in a tank
We want to estimate the temperature of the liquid in a tank.

Figure 5.1: Estimating the liquid temperature.

We assume that at a steady state, the liquid temperature is constant. However, some
fluctuations in the true liquid temperature are possible. We can describe the system
dynamics by the following equation:

xn = T + wn (5.2)

Where:

T is the constant temperature
wn is a random process noise with variance q

5.2.1 The numerical example
• Let us assume a true temperature of 50 degrees Celsius.
• We assume that the model is accurate. Thus we set the process noise variance

(q) to 0.0001.
• The measurement error (standard deviation) is 0.1 degrees Celsius.
• The measurements are taken every 5 seconds.
• The true liquid temperature values at the measurement points are: 50.005oC,

49.994oC, 49.993oC, 50.001oC, 50.006oC, 49.998oC, 50.021oC, 50.005oC, 50oC,
and 49.997oC.

• The measurements are: 49.986oC, 49.963oC, 50.09oC, 50.001oC, 50.018oC,
50.05oC, 49.938oC, 49.858oC, 49.965oC, and 50.114oC.

102 Chapter 5. Adding process noise

The following chart compares the true liquid temperature and the measurements.

Figure 5.2: Example 6 : true temperature vs. measurements

5.2.1.1 Iteration Zero

Before the first iteration, we must initialize the Kalman Filter and predict the
following state (which is the first state).

Initialization

We don’t know the true temperature of the liquid in a tank, and our guess is 60oC.

x̂0,0 = 60oC

Our guess is imprecise, so we set our initialization estimate error σ to 100. The
Estimate Variance of the initialization is the error variance (σ2):

p0,0 = 1002 = 10, 000

This variance is very high. We get faster Kalman Filter convergence if we initialize
with a more meaningful value.

Prediction

Since our model has constant dynamics, the predicted estimate is equal to the current
estimate:

x̂1,0 = 60oC

The extrapolated estimate variance:

p1,0 = p0,0 + q = 10000 + 0.0001 = 10000.0001

5.2 Example 6 – Estimating the temperature of the liquid in a tank 103

5.2.1.2 First Iteration

Step 1 - Measure

The measurement value:

z1 = 49.986oC

Since the measurement error is 0.1 (σ), the variance (σ2) would be 0.01; thus, the
measurement variance is:

r1 = 0.01

Step 2 - Update

Kalman Gain calculation:

K1 =
p1,0

p1,0 + r1
=

10000.0001

10000.0001 + 0.01
= 0.999999

The Kalman Gain is almost 1; thus, our estimate error is much bigger than the mea-
surement error. Thus the weight of the estimate is negligible, while the measurement
weight is almost 1.

Estimating the current state:

x̂1,1 = x̂1,0 +K1 (z1 − x̂1,0) = 60 + 0.999999 (49.986− 60) = 49.986oC

Update the current estimate variance:

p1,1 = (1−K1) p1,0 = (1− 0.999999) 10000.0001 = 0.01

Step 3 - Predict

Since our system’s Dynamic Model is constant, i.e., the liquid temperature doesn’t
change:

x̂2,1 = x̂1,1 = 49.986oC

The extrapolated estimate variance is:

p2,1 = p1,1 + q = 0.01 + 0.0001 = 0.0101

5.2.1.3 Second Iteration

Step 1 - Measure

The second measurement is:

z2 = 49.963oC

Since the measurement error is 0.1 (σ), the variance (σ2) would be 0.01; thus, the
measurement variance is:

r2 = 0.01

104 Chapter 5. Adding process noise

Step 2 - Update

Kalman Gain calculation:

K2 =
p2,1

p2,1 + r2
=

0.0101

0.0101 + 0.01
= 0.5

The Kalman Gain is 0.5, i.e., the weight of the estimate and the measurement weight
are equal.

Estimating the current state:

x̂2,2 = x̂2,1 +K2 (z2 − x2,1) = 50.13 + 0.47 (48.44− 50.13) = 49.33m

Update the current estimate variance:

p2,2 = (1−K2) p2,1 = (1− 0.5) 0.0101 = 0.005

Step 3 - Predict

Since the dynamic model of the system is constant, i.e., the liquid temperature
doesn’t change:

x̂3,2 = x̂2,2 = 49.974oC

The extrapolated estimate variance is:

p3,2 = p2,2 + q = 0.005 + 0.0001 = 0.0051

5.2.1.4 Iterations 3-10

The calculations for the subsequent iterations are summarized in the following table:

Table 5.2: Example 6 filter iterations.

n zn

Current state estimates
(Kn, x̂n,n, pn,n)

Prediction
(x̂n+1,n, pn+1,n)

3 50.09oC

K3 =
0.0051

0.0051 + 0.01
= 0.3388

x̂3,3 = 49.974 +

0.3388 (50.09− 49.974) =

50.016oC

p3,3 = (1− 0.3388) 0.0051 =

0.0034

x̂4,3 = x̂3,3 = 50.016oC

p4,3 = 0.0034 + 0.0001 = 0.0035

Continued on next page

5.2 Example 6 – Estimating the temperature of the liquid in a tank 105

Table 5.2: Example 6 filter iterations. (Continued)

4 50.001oC

K4 =
0.0035

0.0035 + 0.01
= 0.2586

x̂4,4 = 50.016 +

0.2586 (50.001− 50.016) =

50.012oC

p4,4 = (1− 0.2586) 0.0035 =

0.0026

x̂5,4 = x̂4,4 = 50.012oC

p5,4 = 0.0026 + 0.0001 = 0.0027

5 50.018oC

K5 =
0.0027

0.0027 + 0.01
= 0.2117

x̂5,5 = 50.012 +

0.2117 (50.018− 50.012) =

50.013oC

p5,5 = (1− 0.2117) 0.0027 =

0.0021

x̂6,5 = x̂5,5 = 50.013oC

p6,5 = 0.0021 + 0.0001 = 0.0022

6 50.05oC

K6 =
0.0022

0.0022 + 0.01
= 0.1815

x̂6,6 = 50.013 +

0.1815 (50.05− 50.013) =

50.02oC

p6,6 = (1− 0.1815) 0.0022 =

0.0018

x̂7,6 = x̂6,6 = 50.02oC

p7,6 = 0.0018 + 0.0001 = 0.0019

7 49.938oC

K7 =
0.0019

0.0019 + 0.01
= 0.1607

x̂7,7 = 50.02 +

0.1607 (49.938− 50.02) =

50.007oC

p7,7 = (1− 0.1607) 0.0019 =

0.0016

x̂8,7 = x̂7,7 = 49.978oC

p8,7 = 0.0016 + 0.0001 = 0.0017

Continued on next page

106 Chapter 5. Adding process noise

Table 5.2: Example 6 filter iterations. (Continued)

8 49.858oC

K8 =
0.0017

0.0017 + 0.01
= 0.1458

x̂8,8 = 50.007 +

0.1458 (49.858− 50.007) =

49.985oC

p8,8 = (1− 0.1458) 0.0017 =

0.0015

x̂9,8 = x̂8,8 = 49.985oC

p9,8 = 0.0015 + 0.0001 = 0.0016

9 49.965oC

K9 =
0.0016

0.0016 + 0.01
= 0.1348

x̂9,9 = 49.985 +

0.1348 (49.965− 49.985) =

49.982oC

p9,9 = (1− 0.1348) 0.0016 =

0.0014

x̂10,9 = x̂9,9 = 49.982oC

p10,9 = 0.0014+0.0001 = 0.0015

10 50.114oC

K10 =
0.0015

0.0015 + 0.01
= 0.1265

x̂10,10 = 49.982 +

0.1265 (50.114− 49.982) =

49.999oC

p10,10 = (1− 0.1265) 0.0015 =

0.0013

x̂11,10 = x̂10,10 = 49.999oC

p11,10 = 0.0013 + 0.0001 =

0.0014

5.2.2 Results analysis
The following chart describes the Kalman Gain.

5.2 Example 6 – Estimating the temperature of the liquid in a tank 107

Figure 5.3: Example 6: the Kalman Gain.

As you can see, the Kalman Gain gradually decreases; therefore, the KF converges.

The following chart compares the true value, measured values, and estimates. The
confidence interval is 95%.

You can find the guidelines for a confidence interval calculation in Appendix B.

Figure 5.4: Example 6: true value, measured values and estimates.

As you can see, the estimated value converges toward the true value. The KF
estimates uncertainties are too high for the 95% confidence level.

108 Chapter 5. Adding process noise

5.2.3 Example summary
We measured a liquid temperature using the one-dimensional Kalman Filter. Al-
though the system dynamics include a random process noise, the Kalman Filter
provides a good estimation.

5.3 Example 7 – Estimating the temperature of a heating liquid I 109

5.3 Example 7 – Estimating the temperature of a heating

liquid I
Like in the previous example, we estimate the temperature of a liquid in a tank. In
this case, the dynamic model of the system is not constant - the liquid is heating at
a rate of 0.1oC every second.

5.3.1 The numerical example
The Kalman Filter parameters are similar to the previous example:

• We assume that the model is accurate. Thus we set the process noise variance
(q) to 0.0001.

• The measurement error (standard deviation) is 0.1oC.
• The measurements are taken every 5 seconds.
• The dynamic model of the system is constant.

R Although the true dynamic model of the system is not constant (since the
liquid is heating), we treat the system as a system with a constant dynamic
model (the temperature doesn’t change).

• The true liquid temperature values at the measurement points are: 50.505oC,
50.994oC, 51.493oC, 52.001oC, 52.506oC, 52.998oC, 53.521oC, 54.005oC, 54.5oC,
and 54.997oC.

• The measurements are: 50.486oC, 50.963oC, 51.597oC, 52.001oC, 52.518oC,
53.05oC, 53.438oC, 53.858oC, 54.465oC, and 55.114oC.

The following chart compares the true liquid temperature and the measurements.

Figure 5.5: Example 7 : true temperature vs. measurements

110 Chapter 5. Adding process noise

5.3.1.1 Iteration Zero

Iteration zero is similar to the previous example.

Before the first iteration, we must initialize the Kalman Filter and predict the
following state (which is the first state).

Initialization

We don’t know the true temperature of the liquid in a tank, and our guess is 10oC.

x̂0,0 = 10oC

Our guess is imprecise, so we set our initialization estimate error σ to 100. The
Estimate Variance of the initialization is the error variance (σ2):

p0,0 = 1002 = 10, 000

This variance is very high. We get faster Kalman Filter convergence if we initialize
with a more meaningful value.

Prediction

Now, we shall predict the next state based on the initialization values.

Since our model has constant dynamics, the predicted estimate is equal to the current
estimate:

x̂1,0 = 10oC

The extrapolated estimate variance:

p1,0 = p0,0 + q = 10000 + 0.0001 = 10000.0001

5.3.1.2 Iterations 1-10

The calculations for the subsequent iterations are summarized in the following table:

5.3 Example 7 – Estimating the temperature of a heating liquid I 111

Table 5.3: Example 7 filter iterations.

n zn

Current state estimates
(Kn, x̂n,n, pn,n)

Prediction
(x̂n+1,n, pn+1,n)

1 50.486oC

K1 =
10000.0001

10000.0001 + 0.01
=

0.999999

x̂1,1 = 10 +

0.999999 (50.486− 10) =

50.486oC

p1,1 =

(1− 0.999999) 10000.0001 =

0.01

x̂2,1 = x̂1,1 = 50.486oC

p2,1 = 0.01 + 0.0001 = 0.0101

2 50.963oC

K2 =
0.0101

0.0101 + 0.01
= 0.5025

x̂2,2 = 50.486 +

0.5025 (50.963− 50.486) =

50.726oC

p2,2 = (1− 0.5025) 0.0101 =

0.005

x̂3,2 = x̂2,2 = 50.726oC

p3,2 = 0.005 + 0.0001 = 0.0051

3 51.597oC

K3 =
0.0051

0.0051 + 0.01
= 0.3388

x̂3,3 = 50.726 +

0.3388 (51.597− 50.726) =

51.021oC

p3,3 = (1− 0.3388) 0.0051 =

0.0034

x̂4,3 = x̂3,3 = 51.021oC

p4,3 = 0.0034 + 0.0001 = 0.0035

Continued on next page

112 Chapter 5. Adding process noise

Table 5.3: Example 7 filter iterations. (Continued)

4 52.001oC

K4 =
0.0035

0.0035 + 0.01
= 0.2586

x̂4,4 = 51.021 +

0.2586 (52.001− 51.021) =

51.274oC

p4,4 = (1− 0.2586) 0.0035 =

0.0026

x̂5,4 = x̂4,4 = 51.274oC

p5,4 = 0.0026 + 0.0001 = 0.0027

5 52.518oC

K5 =
0.0027

0.0027 + 0.01
= 0.2117

x̂5,5 = 51.274 +

0.2117 (52.518− 51.274) =

51.538oC

p5,5 = (1− 0.2117) 0.0027 =

0.0021

x̂6,5 = x̂5,5 = 51.538oC

p6,5 = 0.0021 + 0.0001 = 0.0022

6 53.05oC

K6 =
0.0022

0.0022 + 0.01
= 0.1815

x̂6,6 = 51.538 +

0.1815 (53.05− 51.538) =

51.812oC

p6,6 = (1− 0.1815) 0.0022 =

0.0018

x̂7,6 = x̂6,6 = 51.812oC

p7,6 = 0.0018 + 0.0001 = 0.0019

7 53.438oC

K7 =
0.0019

0.0019 + 0.01
= 0.1607

x̂7,7 = 51.812 +

0.1607 (53.438− 51.812) =

52.0735oC

p7,7 = (1− 0.1607) 0.0019 =

0.0016

x̂8,7 = x̂7,7 = 52.0735oC

p8,7 = 0.0016 + 0.0001 = 0.0017

Continued on next page

5.3 Example 7 – Estimating the temperature of a heating liquid I 113

Table 5.3: Example 7 filter iterations. (Continued)

8 53.858oC

K8 =
0.0017

0.0017 + 0.01
= 0.1458

x̂8,8 = 52.0735 +

0.1458 (53.858− 52.0735) =

52.334oC

p8,8 = (1− 0.1458) 0.0017 =

0.0015

x̂9,8 = x̂8,8 = 52.334oC

p9,8 = 0.0015 + 0.0001 = 0.0016

9 54.523oC

K9 =
0.0016

0.0016 + 0.01
= 0.1348

x̂9,9 = 52.334 +

0.1348 (54.523− 52.334) =

52.621oC

p9,9 = (1− 0.1348) 0.0016 =

0.0014

x̂10,9 = x̂9,9 = 52.621oC

p10,9 = 0.0014+0.0001 = 0.0015

10 55.114oC

K10 =
0.0015

0.0015 + 0.01
= 0.1265

x̂10,10 = 2.621 +

0.1265 (55.114− 52.621) =

52.936oC

p10,10 = (1− 0.1265) 0.0015 =

0.0013

x̂11,10 = x̂10,10 = 52.936oC

p11,10 = 0.0013 + 0.0001 =

0.0014

114 Chapter 5. Adding process noise

5.3.2 Results analysis
The following chart compares the true value, measured values, and estimates.

Figure 5.6: Example 7: true value, measured values and estimates.

As you can see, the Kalman Filter has failed to provide a reliable estimation. There
is a lag error in the Kalman Filter estimation. We’ve already encountered the lag
error in Example 3, where we estimated the position of an accelerating aircraft using
the α− β filter that assumes constant aircraft velocity. We got rid of the lag error in
Example 4, where we replaced the α− β filter with the α− β − γ filter that assumes
acceleration.

There are two reasons for the lag error in our Kalman Filter example:

• The dynamic model doesn’t fit the case.
• We have chosen very low process noise (q = 0.0001) while the true temperature

fluctuations are much more significant.

R The lag error is constant. Therefore the estimate curve should have the
same slope as the true value curve. Figure 5.6 presents only the 10 first
measurements, which is not enough for convergence. Figure 5.7 presents the
first 100 measurements with a constant lag error.

5.3 Example 7 – Estimating the temperature of a heating liquid I 115

Figure 5.7: Example 7: 100 measurements.

There are two possible ways to fix the lag error:

• If we know that the liquid temperature can change linearly, we can define a
new model that considers a possible linear change in the liquid temperature.
We did this in Example 4. This method is preferred. However, this method
won’t improve the Kalman Filter performance if the temperature change can’t
be modeled.

• On the other hand, since our model is not well defined, we can adjust the
process model reliability by increasing the process noise (q). See the next
example for details.

Another problem is a low estimate uncertainty. The KF failed to provide accurate
estimates and is also confident in its estimates. It is an example of a bad KF
design.

5.3.3 Example summary
In this example, we measured the temperature of a heating liquid using a one-
dimensional Kalman Filter with a constant dynamic model. We’ve observed the lag
error in the Kalman Filter estimation. The wrong dynamic model and process model
definitions cause the lag error.

An appropriate dynamic model or process model definition can fix the lag error.

116 Chapter 5. Adding process noise

5.4 Example 8 – Estimating the temperature of a heating

liquid II
This example is similar to the previous example, with only one change. Since our
process is not well-defined, we increase the process variance (q) from 0.0001 to 0.15.

5.4.1 The numerical example

5.4.1.1 Iteration Zero

Iteration zero is similar to the previous example.

Before the first iteration, we must initialize the Kalman Filter and predict the
following state (which is the first state).

Initialization

We don’t know the true temperature of the liquid in a tank, and our guess is 10oC.

x̂0,0 = 10oC

Our guess is imprecise, so we set our initialization estimate error σ to 100. The
Estimate Variance of the initialization is the error variance (σ2):

p0,0 = 1002 = 10, 000

This variance is very high. We get faster Kalman Filter convergence if we initialize
with a more meaningful value.

Prediction

Now, we shall predict the next state based on the initialization values.

Since our model has constant dynamics, the predicted estimate is equal to the current
estimate:

x̂1,0 = 10oC

The extrapolated estimate variance:

p1,0 = p0,0 + q = 10000 + 0.15 = 10000.15

5.4.1.2 Iterations 1-10

The calculations for the subsequent iterations are summarized in the following table:

5.4 Example 8 – Estimating the temperature of a heating liquid II 117

Table 5.4: Example 5 filter iterations.

n zn

Current state estimates
(Kn, x̂n,n, pn,n)

Prediction
(x̂n+1,n, pn+1,n)

1 50.486oC

K1 =
10000.15

10000.15 + 0.01
=

0.999999

x̂1,1 = 10 +

0.999999 (50.486− 10) =

50.486oC

p1,1 =

(1− 0.999999) 10000.15 = 0.01

x̂2,1 = x̂1,1 = 50.486oC

p2,1 = 0.01 + 0.15 = 0.16

2 50.963oC

K2 =
0.16

0.16 + 0.01
= 0.9412

x̂2,2 = 50.486 +

0.9412 (50.963− 50.486) =

50.934oC

p2,2 = (1− 0.9412) 0.16 =

0.0094

x̂3,2 = x̂2,2 = 50.934oC

p3,2 = 0.0094 + 0.15 = 0.1594

3 51.597oC

K3 =
0.1594

0.1594 + 0.01
= 0.941

x̂3,3 = 50.934 +

0.941 (51.597− 50.934) =

51.556oC

p3,3 = (1− 0.941) 0.1594 =

0.0094

x̂4,3 = x̂3,3 = 51.556oC

p4,3 = 0.0094 + 0.15 = 0.1594

Continued on next page

118 Chapter 5. Adding process noise

Table 5.4: Example 5 filter iterations. (Continued)

4 52.001oC

K4 =
0.1594

0.1594 + 0.01
= 0.941

x̂4,4 = 51.556 +

0.941 (52.001− 51.556) =

51.975oC

p4,4 = (1− 0.941) 0.1594 =

0.0094

x̂5,4 = x̂4,4 = 51.975oC

p5,4 = 0.0094 + 0.15 = 0.1594

5 52.518oC

K5 =
0.1594

0.1594 + 0.01
= 0.941

x̂5,5 = 51.975 +

0.941 (52.518− 51.975) =

52.486oC

p5,5 = (1− 0.941) 0.1594 =

0.0094

x̂6,5 = x̂5,5 = 52.486oC

p6,5 = 0.0094 + 0.15 = 0.1594

6 53.05oC

K6 =
0.1594

0.1594 + 0.01
= 0.941

x̂6,6 = 52.486 +

0.941 (53.05− 52.486) =

53.017oC

p6,6 = (1− 0.941) 0.1594 =

0.0094

x̂7,6 = x̂6,6 = 53.017oC

p7,6 = 0.0094 + 0.15 = 0.1594

7 53.438oC

K7 =
0.1594

0.1594 + 0.01
= 0.941

x̂7,7 = 53.017 +

0.941 (53.438− 53.017) =

53.413oC

p7,7 = (1− 0.941) 0.1594 =

0.0094

x̂8,7 = x̂7,7 = 53.413oC

p8,7 = 0.0094 + 0.15 = 0.1594

Continued on next page

5.4 Example 8 – Estimating the temperature of a heating liquid II 119

Table 5.4: Example 5 filter iterations. (Continued)

8 53.858oC

K8 =
0.1594

0.1594 + 0.01
= 0.941

x̂8,8 = 53.413 +

0.941 (53.858− 53.413) =

53.832oC

p8,8 = (1− 0.941) 0.1594 =

0.0094

x̂9,8 = x̂8,8 = 53.832oC

p9,8 = 0.0094 + 0.15 = 0.1594

9 54.523oC

K9 =
0.1594

0.1594 + 0.01
= 0.941

x̂9,9 = 53.832 +

0.941 (54.523− 53.832) =

54.428oC

p9,9 = (1− 0.941) 0.1594 =

0.0094

x̂10,9 = x̂9,9 = 54.428oC

p10,9 = 0.0094 + 0.15 = 0.1594

10 55.114oC

K10 =
0.1594

0.1594 + 0.01
= 0.941

x̂10,10 = 54.428 +

0.941 (55.114− 54.428) =

55.074oC

p10,10 = (1− 0.941) 0.1594 =

0.0094

x̂11,10 = x̂10,10 = 55.074oC

p11,10 = 0.0094 + 0.15 = 0.1594

120 Chapter 5. Adding process noise

5.4.2 Results analysis
The following chart compares the true value, measured values, and estimates.

Figure 5.8: Example 8: true value, measured values and estimates.

As you can see, the estimates follow the measurements. There is no lag error.

Let us take a look at the Kalman Gain.

Figure 5.9: Example 8: the Kalman Gain.

Due to the high process uncertainty, the measurement weight is much higher than

5.4 Example 8 – Estimating the temperature of a heating liquid II 121

the weight of the estimate. Thus, the Kalman Gain is high, and it converges to 0.94.

The good news is that we can trust the estimates of this KF. The true values (the
green line) are within the 95% confidence region.

5.4.3 Example summary
The best Kalman Filter implementation involves a model that is very close to reality,
leaving little room for process noise. However, a precise model is not always available.
For example, an airplane pilot may decide to perform a sudden maneuver that
changes the predicted airplane trajectory. In this case, the process noise would be
increased.

II Multivariate
Kalman Filter

6 Foreword . 125

7 Essential background II . 129

8 Kalman Filter Equations Derivation 151

9 Multivariate KF Examples 187

6. Foreword

After reading the “Kalman Filter in one dimension” part, you should be familiar
with the concepts of the Kalman Filter. In this part, we derive the multidimensional
(multivariate) Kalman Filter equations.

This part deals with a Linear Kalman Filter (LKF). The LKF assumes that the
system dynamics are linear. The next part describes non-linear Kalman Filters.

Until now, we’ve dealt with one-dimensional processes, like estimating the liquid
temperature. But many dynamic processes have two, three, or even more dimensions.

For instance, the state vector that describes the airplane’s position in space is
three-dimensional:

xy
z

 (6.1)

The state vector that describes the airplane position and velocity is six-dimensional:



x

y

z

ẋ

ẏ

ż


(6.2)

The state vector that describes the airplane position, velocity, and acceleration is
nine-dimensional:

126 Chapter 6. Foreword



x

y

z

ẋ

ẏ

ż

ẍ

ÿ

z̈


(6.3)

Figure 6.1: Airplane in 3D.

Assuming a constant acceleration dynamic model, we can describe the extrapolated
airplane state at time n by nine motion equations:

127



xn = xn−1 + ẋn−1∆t+
1

2
ẍn−1∆t2

yn = yn−1 + ẏn−1∆t+
1

2
ÿn−1∆t2

zn = zn−1 + żn−1∆t+
1

2
z̈n−1∆t2

ẋn = ẋn−1 + ẍn−1∆t

ẏn = ẏn−1 + ÿn−1∆t

żn = żn−1 + z̈n−1∆t

ẍn = ẍn−1

ÿn = ÿn−1

z̈n = z̈n−1

(6.4)

It is common practice to describe a multidimensional process with a single equation
in matrix form.

First, it is very exhausting to write all these equations; representing them in matrix
notation is much shorter and more elegant.

Second, computers are highly efficient at matrix calculations. Implementing the
Kalman Filter in matrix form yields faster computation run time.

The following chapters describe the Kalman Filter equations in matrix form. And,
of course, the theoretical part is followed by fully solved numerical examples.

The final chapter includes two numerical examples. In the first example, we design
a six-dimensional Kalman Filter without control input. In the second example, we
design a two-dimensional Kalman Filter with a control input.

7. Essential background II

Before we tackle the multidimensional Kalman Filter, we’ll need to review some
essential math topics:

• Matrix operations.
• Expectation algebra.
• Multivariate Normal Distribution.

You can jump to chapter 8 if you are familiar with these topics.

The notation used in this book:

• Bold-face, lower-case letters refer to vectors, such as x.
• Bold-face, capital letters refer to matrices, such as A.
• Normal-face lower-case letters refer to scalars or vector elements.
• Normal-face capital letters refer to matrix elements.

7.1 Matrix operations
All you need to know is basic terms and operations such as:

• Vector and matrix addition and multiplication.
• Matrix Transpose.
• Matrix Inverse (you don’t need to invert matrices by yourself, you just need to

know what the inverse of the matrix is).
• Symmetric Matrix.
• Eigenvalues and eigenvectors.

There are numerous Linear Algebra textbooks and web tutorials that cover these
topics.

7.2 Expectation algebra
I extensively use the expectation algebra rules for Kalman Filter equations derivations.
If you are interested in understanding the derivations, you need to master expectation
algebra.

You already know what a random variable is and what an expected value (or
expectation) is. If not, please read chapter 2 - “Essential background I.”

130 Chapter 7. Essential background II

7.2.1 Basic expectation rules
The expectation is denoted by the capital letter E.

The expectation E(X) of the random variable X equals the mean of the random
variable:

Expectation of the random variable

E(X) = µX (7.1)

Where µX is the mean of the random variable.

Here are some basic expectation rules:

Rule Notes

1 E(X) = µX = Σxp(x) p(x) is the probability of x (discrete
case)

2 E(a) = a a is constant

3 E(aX) = aE(X) a is constant

4 E(a±X) = a± E(X) a is constant

5 E(a± bX) = a± bE(X) a and b are constant

6 E(X ± Y) = E(X)± E(Y) Y is another random variable

7 E(XY) = E(X)E(Y) If X and Y are independent

Table 7.1: Expectation rules.

7.2 Expectation algebra 131

7.2.2 Variance and Covariance expectation rules
The following table includes the variance and covariance expectation rules.

Rule Notes

8 V (a) = 0
V (a) is the variance of a
a is constant

9 V (a±X) = V (X)
V (X) is the variance of X
a is constant

10 V (X) = E(X2)− µ2
X V (X) is the variance of X

11 COV (X, Y) = E(XY)− µXµY COV (X, Y) is a covariance of X
and Y

12 COV (X, Y) = 0 if X and Y are independent

13 V (aX) = a2V (X) a is constant

14 V (X ± Y) =

V (X) + V (Y)± 2COV (X, Y)

15 V (XY) ̸= V (X)V (Y)

Table 7.2: Variance and covariance expectation rules.

The variance and covariance expectation rules are not straightforward. I prove some
of them.

Rule 8

V (a) = 0 (7.2)

A constant does not vary, so the variance of a constant is 0.

Rule 9

V (a±X) = V (X) (7.3)

Adding a constant to the variable does not change its variance.

132 Chapter 7. Essential background II

Rule 10

V (X) = E(X2)− µ2
X (7.4)

The proof

Equation Notes

V (X) = σ2
X = E((X − µX)

2)

= E(X2 − 2XµX + µ2
X)

= E(X2)− E(2XµX) + E(µ2
X) Applied rule number 5: E(a± bX) = a± bE(X)

= E(X2)− 2µXE(X) + E(µ2
X) Applied rule number 3: E(aX) = aE(X)

= E(X2)− 2µXE(X) + µ2
X Applied rule number 2: E(a) = a

= E(X2)− 2µXµX + µ2
X Applied rule number 1: E(X) = µX

= E(X2)− µ2
X

Table 7.3: Variance expectation rule.

7.2 Expectation algebra 133

Rule 11

COV (X, Y) = E(XY)− µXµY (7.5)

The proof

Equation Notes

COV (X, Y) = E((X − µX)(Y − µY)

= E(XY −XµY − Y µX + µXµY)

= E(XY)− E(XµY)− E(Y µX) + E(µXµY)
Applied rule number 6:
E(X ± Y) = E(X)± E(Y)

= E(XY)− µYE(X)− µXE(Y) + E(µXµY)
Applied rule number 3:
E(aX) = aE(X)

= E(XY)− µYE(X)− µXE(Y) + µXµY Applied rule number 2: E(a) = a

= E(XY)− µY µX − µXµY + µXµY Applied rule number 1: E(X) = µX

= E(XY)− µXµY

Table 7.4: Covariance expectation rule.

134 Chapter 7. Essential background II

Rule 13

V (aX) = a2V (X) (7.6)

The proof

Equation Notes

V (K) = σ2
K = E(K2)− µ2

K

K = aX

V (K) = V (aX) = E((aX)2)− (aµX)
2 Substitute K with aX

= E(a2X2)− a2µ2
X

= a2E(X2)− a2µ2
X

Applied rule number 3:
E(aX) = aE(X)

= a2(E(X2)− µ2
X)

= a2V (X)
Applied rule number 10:
V (X) = E(X2)− µ2

X

Table 7.5: Variance square expectation rule.

For constant velocity motion:

V (x) = ∆t2V (v) (7.7)

or

σ2
x = ∆t2σ2

v (7.8)

Where:
x is the displacement of the body
v is the velocity of the body
∆t is the time interval

7.2 Expectation algebra 135

Rule 14

V (X ± Y) = V (X) + V (Y)± 2COV (X, Y) (7.9)

The proof

Equation Notes

V (X ± Y)

= E((X ± Y)2)− (µX ± µY)
2 Applied rule number 10:

V (X) = E(X2)− µ2
X

= E(X2 ± 2XY + Y 2)− (µ2
X ± 2µXµY + µ2

y)

= E(X2)− µ2
X+E(Y 2)− µ2

Y±2(E(XY)− µXµY) Applied rule number 6:
E(X ± Y) = E(X)± E(Y)

= V (X) + V (Y)±2(E(XY)− µXµY) Applied rule number 10:
V (X) = E(X2)− µ2

X

= V (X) + V (Y)± 2COV (X, Y) Applied rule number 11:
COV (X, Y) = E(XY)− µXµY

Table 7.6: Variance sum expectation rule.

136 Chapter 7. Essential background II

7.3 Multivariate Normal Distribution

7.3.1 Introduction
We’ve seen that the Kalman Filter output is a random variable. The mean of the
random variable is the state estimate. The variance of the random variable represents
the estimation uncertainty. The Kalman Filter provides us with the estimate and
the level of confidence of its estimate.

The one-dimensional Kalman Filter equations include four uncertainty variables:
pn,n is the variance of an estimate (the current state)
pn+1,n is the variance of a prediction (the next state)
rn is the measurement variance
q is the process noise

For a multivariate Kalman Filter, the system state is described by a vector with more
than one variable. For example, the object’s position on the plane can be described
by two variables: x – position and y – position:

x =

[
x

y

]
(7.10)

The Kalman Filter output is a multivariate random variable. A covariance
matrix describes the squared uncertainty of the multivariate random variable.

The uncertainty variables of the multivariate Kalman Filter are:
Pn,n is a covariance matrix that describes the squared uncertainty of an

estimate
Pn+1,n is a covariance matrix that describes the squared uncertainty of a

prediction
Rn is a covariance matrix that describes the squared measurement

uncertainty
Q is a covariance matrix that describes the process noise

This chapter is about the multivariate normal distribution and the covariance
matrix.

7.3.2 Covariance
Covariance is a measure of the strength of the correlation between two or more sets
of random variates.

Assume a set of object location measurements on the x− y plane.

7.3 Multivariate Normal Distribution 137

Figure 7.1: Object on the x-y plane.

Due to the random error, there is a variance in the measurements.

Let us see some examples of different measurement sets.

Figure 7.2: Examples of different measurement sets.

The two upper subplots demonstrate uncorrelated measurements. The x and y values

138 Chapter 7. Essential background II

don’t depend on each other. The x and y values of the blue data set have the same
variance, and we can see a circular distribution shape. For the red data set, the
variance of the x values is greater than that of the y values, and the distribution
shape is elliptic. Since the measurements are uncorrelated, the covariance of x and y

equals zero.

The two lower subplots demonstrate correlated measurements. There is a dependency
between x and y values. For the green data set, an increase in x results in an increase
in y and vice versa. The correlation is positive; therefore, the covariance is positive.
For the cyan data set, an increase in x results in a decrease in y and vice versa. The
correlation is negative; therefore, the covariance is negative.

The covariance between population X and population Y with size N is given by:

COV (X, Y) =
1

N

N∑
i=1

(xi − µx)(yi − µy) (7.11)

Let us rewrite the covariance equation:

Equation Notes

COV (X, Y) =
1

N

N∑
i=1

(xi − µx)(yi − µy)

=
1

N

N∑
i=1

(xiyi − xiµy − yiµx + µxµy) Open parenthesis

=
1

N

N∑
i=1

(xiyi)−
1

N

N∑
i=1

(xiµy)−
1

N

N∑
i=1

(yiµx) +
1

N

N∑
i=1

(µxµy) Distribute

=
1

N

N∑
i=1

(xiyi)−
µy

N

N∑
i=1

(xi)−
µx

N

N∑
i=1

(yi) + µxµy

µx =
1

N

N∑
i=1

(xi)

µy =
1

N

N∑
i=1

(yi)

=
1

N

N∑
i=1

(xiyi)− µxµy − µxµy + µxµy

=
1

N

N∑
i=1

(xiyi)− µxµy

Table 7.7: Covariance equation.

7.3 Multivariate Normal Distribution 139

The covariance of a sample with size N is normalized by N − 1:

COV (X, Y) =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (7.12)

Equation Notes

COV (X, Y) =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy)

=
1

N − 1

N∑
i=1

(xiyi − xiµy − yiµx + µxµy)
Open
parenthesis

=
1

N − 1

N∑
i=1

(xiyi)−
1

N − 1

N∑
i=1

(xiµy)

−
1

N − 1

N∑
i=1

(yiµx) +
1

N − 1

N∑
i=1

(µxµy)

Distribute

=
1

N − 1

N∑
i=1

(xiyi)−
µy

N − 1

N∑
i=1

(xi)

−
µx

N − 1

N∑
i=1

(yi) +
N

N − 1
µxµy

µx =
1

N

N∑
i=1

(xi)

µy =
1

N

N∑
i=1

(yi)

=
1

N − 1

N∑
i=1

(xiyi)−
N

N − 1
µxµy −

N

N − 1
µxµy +

N

N − 1
µxµy

=
1

N − 1

N∑
i=1

(xiyi)−
N

N − 1
µxµy

Table 7.8: Sample covariance equation.

Example

Given samples:

x =


2

3

−1

4

 y =


8

7

9

6



140 Chapter 7. Essential background II

COV (X, Y) =
1

N − 1

∑N
i=1(xiyi)−

N

N − 1
µxµy

=
1

3
(2× 8 + 3× 7− 1× 9 + 4× 6)−

4

3

(
(2 + 3− 1 + 4)

4

(8 + 7 + 9 + 6)

4

)
= −2.67

We can stack the samples in two vectors x and y. The covariance in vector notation
is given by:

COV (X, Y) =
1

N − 1
xTy − N

N − 1
µxµy (7.13)

For a zero-mean random variable, the covariance is given by:

COV (X, Y) =
1

N − 1
xTy (7.14)

7.3.3 Covariance matrix
A covariance matrix is a square matrix that represents the covariance between each
pair of elements in a given multivariate random variable.

For a two-dimensional random variable, the covariance matrix is:

Σ =

[
σxx σxy

σyx σyy

]
=

[
σ2
x σxy

σyx σ2
y

]
=

[
V AR(x) COV (x, y)

COV (y,x) V AR(y)

]
(7.15)

Note that the off-diagonal entries of the covariance matrix are equal since COV (x, y) =

COV (y,x). If x and y are uncorrelated, the off-diagonal entries of the covariance
matrix are zero.

For a n - dimensional random variable, the covariance matrix is:

Σ =


σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

σn1 σn2 · · · σ2
n

 (7.16)

Most scientific computer packages can compute the covariance matrix.

7.3 Multivariate Normal Distribution 141

Python example:

1 import numpy as np
2

3 x = np.array ([2, 3, -1, 4])
4 y = np.array ([8, 7, 9, 6])
5

6 C = np.cov(x,y)
7 print(C)
8

9 [[4.66666667 -2.66666667]
10 [-2.66666667 1.66666667]]

MATLAB example:

1 x = [2 3 -1 4];
2 y = [8 7 9 6];
3

4 C = cov(x,y)
5

6 C =
7

8 4.6667 -2.6667
9 -2.6667 1.6667

7.3.3.1 Properties of the covariance matrix

1. The diagonal entries of this covariance matrix are the variances of the compo-
nents of the multivariate random variable.

Σii = σ2
i (7.17)

2. Since the diagonal entries are all non-negative, the trace (the sum of diagonal
entries) of this covariance matrix is non-negative:

tr(Σ) =
n∑

i=1

Σii ≥ 0 (7.18)

3. Since Σij = σij = σji = Σji, the covariance matrix is symmetric:

Σ = ΣT (7.19)

4. The covariance matrix is positive semidefinite.
The matrix A is called positive semidefinite if vTAv ≥ 0, for any vector v.
The eigenvalues of A are non-negative.

142 Chapter 7. Essential background II

7.3.3.2 Covariance matrix and expectation

Assume vector x with k elements:

x =


x1

x2

...
xk

 (7.20)

The covariance matrix of the vector x

COV (x) = E
(
(x− µx) (x− µx)

T
)

(7.21)

Where µX is the mean of the random variable.

The proof

COV (x) = E




(x1 − µx1)
2 (x1 − µx1)(x2 − µx2) · · · (x1 − µx1)(xk − µxk

)

(x2 − µx2)(x1 − µx1) (x2 − µx2)
2 · · · (x2 − µx2)(xk − µxk

)
...

...
(xk − µxk

)(x1 − µx1) (xk − µxk
)(x2 − µx2) · · · (xk − µxk

)2




= E



(x1 − µx1)

(x2 − µx2)
...

(xk − µxk
)


[
(x1 − µx1) (x2 − µx2) · · · (xk − µxk

)
]


= E
(
(x− µx) (x− µx)

T
)

7.3.4 Multivariate normal distribution
We are already familiar with a univariate normal distribution. It is described by a
bell-shaped Gaussian function:

p(x|µ, σ) = 1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(7.22)

7.3 Multivariate Normal Distribution 143

The normal distribution is denoted by:

N (µ, σ2)

The multivariate normal distribution is a generalization of the univariate normal
distribution for a multidimensional random variable.

The n - dimensional multivariate normal distribution is described by:

p(x|µ,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(7.23)

Where:
x is an n - dimensional random vector
µ is an n - dimensional mean vector
Σ is a square n× n covariance matrix

7.3.5 Bivariate normal distribution
A bivariate (two-dimensional) normal distribution comprises two normally distributed
random variables. I want to focus on the bivariate normal distribution since it is the
highest dimension of the multivariate normal distribution that we can visualize.

The following plot describes the bivariate Gaussian function.

Figure 7.3: Bivariate Gaussian.

144 Chapter 7. Essential background II

7.3.6 Confidence intervals
A confidence interval specifies the probability that a parameter falls between a pair
of values around the mean for the univariate normal distribution.

For the univariate normal distribution, the area between the 1σ boundaries and the
Gaussian function is 68.26% of the total area under the Gaussian function.

Figure 7.4: Univariate Gaussian.

For the univariate normal distribution, we can formulate the following statements:

• The confidence interval for the probability of 68.26% is 1σ.
• The confidence interval for the probability of 95.44% is 2σ.
• The confidence interval for the probability of 99.74% is 3σ.

We can also find the confidence interval of any specified probability for the univariate
normal distribution. You can see the explanation in Appendix B.

The probability of the bivariate normal distribution is a volume of the three-
dimensional Gaussian function.

For example, the volume of the three-dimensional Gaussian function sliced at 1σ

level is 39.35% of the total volume of the three-dimensional Gaussian function.

7.3 Multivariate Normal Distribution 145

The projection of the three-dimensional Gaussian slice is an ellipse.

Figure 7.5: Bivariate Gaussian with projection.

7.3.7 Covariance ellipse
First, let us find the properties of the covariance ellipse. The covariance ellipse
represents an iso-contour of the Gaussian distribution and allows visualization of a
1σ confidence interval in two dimensions. The covariance ellipse provides a geometric
interpretation of the covariance matrix.

Any ellipse can be described by four parameters:

• Ellipse center µx, µy

• Half-major axis a

• Half-minor axis b

• Orientation angle θ

146 Chapter 7. Essential background II

Figure 7.6: Covariance ellipse.

The ellipse center is a mean of the random variable:

µx =
1

N

N∑
i=1

xi

µy =
1

N

N∑
i=1

yi

(7.24)

The lengths of the ellipse axes are the square roots of the eigenvalues of the random
variable covariance matrix:

• The length of the half-major axis a is given by the highest eigenvalue square
root

• The length of the half-minor axis b is given by the second eigenvalue square
root

The orientation of the ellipse is an orientation of the covariance matrix eigenvector
that corresponds to the highest eigenvalue.

θ = arctan

(
vy
vx

)
(7.25)

Where:

7.3 Multivariate Normal Distribution 147

vx is the x - coordinate of the eigenvector that corresponds to the
highest eigenvalue

vy is the y - coordinate of the eigenvector that corresponds to the
highest eigenvalue

You can use a scientific computer package to compute the covariance ellipse parame-
ters.

Python example:

1 import numpy as np
2

3 C = np.array ([[5, -2],[-2, 1]]) # define covariance matrix
4

5 eigVal , eigVec = np.linalg.eig(C) # find eigenvalues and
eigenvectors

6

7 a = np.sqrt(eigVal [0]) # half -major axis length
8 b = np.sqrt(eigVal [1]) # half -minor axis length
9

10 # ellipse orientation angle
11 theta = np.arctan(eigVec[1, 0] / eigVec[0, 0])

MATLAB example:

1 C = [5 -2; -2 1]; % define covariance matrix
2

3 [eigVec , eigVal] = eig(C); % find eigenvalues and eigenvectors
4

5

6 if eigVal (1,1) > eigVal (2,2) % get the highest eigenvalue index
7

8 a = sqrt(eigVal (1,1)); % half -major axis length
9 b = sqrt(eigVal (2,2)); % half -minor axis length

10

11 theta = atan(eigVec (2,1) / eigVec (1,1)); % ellipse angle (
radians)

12 else
13

14 a = sqrt(eigVal (2,2)); % half -major axis length
15 b = sqrt(eigVal (1,1)); % half -minor axis length
16

17 theta = atan(eigVec (2,2) / eigVec (2,1)); % ellipse angle (
radians)

18 end

148 Chapter 7. Essential background II

7.3.8 Confidence ellipse
In many applications, there is an interest in finding the boundaries of specific
probability. For example, for 95% probability, we should find the boundary that
includes 95% of the Gaussian function volume.

The projection of this boundary onto the x− y plane is the confidence ellipse.

We want to find an elliptical scale factor k, that extends the covariance ellipse to
the confidence ellipse associated with 95% probability.

Figure 7.7: Confidence ellipse.

Since σx and σy represent the standard deviations of stochastically independent
random variables, the addition theorem for the chi-square distribution may be used
to show that the probability associated with a confidence ellipse is given by [4]:

p = 1− exp

(
−1

2
k2

)
(7.26)

For a covariance ellipse k = 1, therefore, the probability associated with a covariance

7.3 Multivariate Normal Distribution 149

ellipse is:

p = 1− exp

(
−1

2

)
= 39.35% (7.27)

For a given probability, we can find an elliptical scale factor:

k =
√
−2ln(1− p) (7.28)

For the probability of 95%:

k =
√

−2ln(1− 0.95) = 2.45 (7.29)

The properties of the confidence ellipse associated with 95% probability are:

• Ellipse center (µx, µy) is similar to the covariance ellipse.
• Orientation angle θ is similar to the covariance ellipse.
• Half-major axis length is 2.45a – a scaled half-major axis of the covariance

ellipse.
• Half-minor axis length is 2.45b – a scaled half-minor axis of the covariance

ellipse.

8. Kalman Filter Equations Derivation

8.1 State Extrapolation Equation
The first Kalman Filter equation that I would like to describe is the state extrapo-
lation equation.

Using the state extrapolation equation, we can predict the next system state based
on the knowledge of the current state. It extrapolates the state vector from the
present (time step n) to the future (time step n+ 1).

The state extrapolation equation describes the model of the dynamic system.

The general form of the state extrapolation equation in a matrix notation is:

State Extrapolation Equation

x̂n+1,n = F x̂n,n +Gun +wn (8.1)

Where:

x̂n+1,n is a predicted system state vector at time step n+ 1

x̂n,n is an estimated system state vector at time step n

un is a control variable or input variable - a measurable
(deterministic) input to the system

wn is a process noise or disturbance - an unmeasurable input that
affects the state

F is a state transition matrix
G is a control matrix or input transition matrix (mapping

control to state variables)

R In the literature, the state transition matrix F is sometimes denoted by a
Greek letter Φ.

In the literature, state extrapolation equation is also called:

• Predictor Equation

152 Chapter 8. Kalman Filter Equations Derivation

• Transition Equation
• Prediction Equation
• Dynamic Model
• State Space Model

Figure 8.1: Kalman Filter Extrapolation.

The state variables may represent attributes of the system that we wish to know.

For example, a moving vehicle has three attributes: position, velocity, and accelera-
tion.

You might ask yourself, which attributes are the state variables, and which attributes
are the input to the system?

• Moving mechanical systems have attributes such as position, velocity, accelera-
tion, and drag.

• A force that acts on a system should be considered an external forcing function,
i.e., an input to the system that controls the state vector (position and velocity
in the constant acceleration case).

• Newton’s second law tells us that F = ma. Thus we can consider acceleration
as an external input to the system.

• The position and the velocity are the primary state variables of interest.

For instance, in a spring system, the force applied to the spring F (t) is an input u(t),
while the spring displacement x(t) is the system state.

8.1 State Extrapolation Equation 153

Figure 8.2: Spring System.

For a falling object, the inputs are the gravitational force Fg and the drag force
Fdrag(t), while the object height h(t) and velocity v(t) are the system states.

Figure 8.3: Falling Object.

R The process noise wn does not typically appear directly in the equations of
interest. Instead, this term is used to model the uncertainty in the Covariance
Extrapolation Equation.

Let’s take a look at several examples of the state extrapolation equation.

8.1.1 Example - airplane - no control input
In this example, we define the State Extrapolation Equation for an airplane, assuming
a constant acceleration model

154 Chapter 8. Kalman Filter Equations Derivation

In this example, there is no control input.

un = 0 (8.2)

Consider an airplane moving in three-dimensional space with constant acceleration.
The state vector x̂n that describes the estimated airplane position, velocity, and
acceleration in a cartesian coordinate system (x, y, z) is: In this example, there is no
control input.

x̂n =



x̂n

ŷn

ẑn
ˆ̇xn

ˆ̇yn
ˆ̇zn
ˆ̈xn

ˆ̈yn
ˆ̈zn


(8.3)

R Don’t confuse the estimated state vector x̂n (bold-face font) and the estimated
airplane position at x - axis denoted by x̂n (normal-face font). Both variables
are denoted by the same letter in the literature, and I am trying to be consistent.

The state transition matrix F is:

F =



1 0 0 ∆t 0 0 0.5∆t2 0 0

0 1 0 0 ∆t 0 0 0.5∆t2 0

0 0 1 0 0 ∆t 0 0 0.5∆t2

0 0 0 1 0 0 ∆t 0 0

0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


(8.4)

The state extrapolation equation is:

8.1 State Extrapolation Equation 155



x̂n+1,n

ŷn+1,n

ẑn+1,n

ˆ̇xn+1,n

ˆ̇yn+1,n

ˆ̇zn+1,n

ˆ̈xn+1,n

ˆ̈yn+1,n

ˆ̈zn+1,n


=



1 0 0 ∆t 0 0 0.5∆t2 0 0

0 1 0 0 ∆t 0 0 0.5∆t2 0

0 0 1 0 0 ∆t 0 0 0.5∆t2

0 0 0 1 0 0 ∆t 0 0

0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





x̂n,n

ŷn,n

ẑn,n
ˆ̇xn,n

ˆ̇yn,n
ˆ̇zn,n
ˆ̈xn,n

ˆ̈yn,n
ˆ̈zn,n


(8.5)

The matrix multiplication results:

x̂n+1,n = x̂n,n + ˆ̇xn,n∆t+ 1
2
ˆ̈xn,n∆t2

ŷn+1,n = ŷn,n + ˆ̇yn,n∆t+ 1
2
ˆ̈yn,n∆t2

ẑn+1,n = ẑn,n + ˆ̇zn,n∆t+ 1
2
ˆ̈zn,n∆t2

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n∆t

ˆ̇yn+1,n = ˆ̇yn,n + ˆ̈yn,n∆t

ˆ̇zn+1,n = ˆ̇zn,n + ˆ̈zn,n∆t

ˆ̈xn+1,n = ˆ̈xn,n

ˆ̈yn+1,n = ˆ̈yn,n

ˆ̈zn+1,n = ˆ̈zn,n

(8.6)

8.1.2 Example - airplane - with control input
This example is similar to the previous example, but now we have a sensor con-
nected to the pilot’s controls, so we have additional information about the airplane
acceleration based on the pilot’s commands.

The state vector x̂n that describes the estimated airplane position and velocity in a
cartesian coordinate system (x, y, z) is:

156 Chapter 8. Kalman Filter Equations Derivation

x̂n =



x̂n

ŷn

ẑn
ˆ̇xn

ˆ̇yn
ˆ̇zn


(8.7)

The control vector un that describes the measured airplane acceleration in a cartesian
coordinate system (x, y, z) is:

un =

ẍn

ÿn

z̈n

 (8.8)

The state transition matrix F is:

F =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(8.9)

The control matrix G is:

G =



0.5∆t2 0 0

0 0.5∆t2 0

0 0 0.5∆t2

∆t 0 0

0 ∆t 0

0 0 ∆t


(8.10)

The state extrapolation equation is:

x̂n+1,n = F x̂n,n +Gun,n (8.11)

8.1 State Extrapolation Equation 157



x̂n+1,n

ŷn+1,n

ẑn+1,n

ˆ̇xn+1,n

ˆ̇yn+1,n

ˆ̇zn+1,n


=



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





x̂n,n

ŷn,n

ẑn,n
ˆ̇xn,n

ˆ̇yn,n
ˆ̇zn,n


+



0.5∆t2 0 0

0 0.5∆t2 0

0 0 0.5∆t2

∆t 0 0

0 ∆t 0

0 0 ∆t



ẍn

ÿn

z̈n



(8.12)

8.1.3 Example – falling object
Consider a free-falling object. The state vector includes the altitude h and the
object’s velocity ḣ:

x̂n =

[
ĥn

ˆ̇hn

]
(8.13)

The state transition matrix F is:

F =

[
1 ∆t

0 1

]
(8.14)

The control matrix G is:

G =

[
0.5∆t2

∆t

]
(8.15)

The input variable un is:

un =
[
g
]

(8.16)

Where g is the gravitational acceleration.

We don’t have a sensor that measures acceleration, but we know that for a falling
object, acceleration equals g.

158 Chapter 8. Kalman Filter Equations Derivation

The state extrapolation equation looks as follows:[
ĥn+1,n

ˆ̇hn+1,n

]
=

[
1 ∆t

0 1

][
ĥn,n

ˆ̇hn,n

]
+

[
0.5∆t2

∆t

] [
g
]

(8.17)

The matrix multiplication results in the following:ĥn+1,n = ĥn,n +
ˆ̇hn,n∆t+ 0.5∆t2g

ˆ̇hn+1,n = ˆ̇hn,n +∆tg
(8.18)

Well, that was easy to describe a dynamic model for an airplane or falling Object. I
suppose that you are familiar with Newton’s motion equations from high school. Ap-
pendix C (“Modeling linear dynamic systems”) generalizes dynamic model derivation
for any linear dynamic system.

8.1.4 State extrapolation equation dimensions
The following table specifies the matrix dimensions of the state extrapolation equation
variables:

Variable Description Dimension

x state vector nx × 1

F state transition matrix nx × nx

u input variable nu × 1

G control matrix nx × nu

w process noise vector nx × 1

Table 8.1: Matrix dimensions of the state extrapolation equation.

8.1.5 Linear time-invariant systems
The Linear Kalman Filter assumes the Linear Time-Invariant (LTI) system model.

So, what is “linear,” and what is “time-invariant”?

Linear systems are described by systems of equations in which the variables are
never multiplied with each other but only with constants and then summed up.
Linear systems are used to describe both static and dynamic relationships between

8.1 State Extrapolation Equation 159

variables.

A linear system is a system whose output function y(t) satisfies the following equation:

y(t) = F (a× g (t) + b× h (t)) = a×F (g (t)) + b×F (h (t)) (8.19)

Where:
a and b are constant real numbers
g and h are any arbitrary functions of an independent variable t

A linear system follows two basic rules:

1. You can “factor out” constant multiplicative scale factors (the a and b above).
2. The system’s response to a sum of inputs is the sum of the responses to each

input separately.

A time-invariant system has a system function that is not a direct function of
time.

Let’s take an amplifier with gain G = 10 as an example.

Figure 8.4: Amplifier.

This system is time-invariant. Although the system’s output changes with time, the
system function is not time-dependent.

A time-invariant system is one where a time delay (or shift) in the input sequence
causes an equivalent time delay in the system’s output sequence.

160 Chapter 8. Kalman Filter Equations Derivation

8.2 Covariance Extrapolation Equation
I assume the reader is already familiar with the concept of covariance extrapolation
(prediction). We’ve already met the Covariance Extrapolation Equation (or
Predictor Covariance Equation) in Part I. In this section, we derive the Kalman
Filter Covariance Extrapolation Equation in matrix notation.

The general form of the Covariance Extrapolation Equation is given by:

Covariance Extrapolation Equation

Pn+1,n = FPn,nF
T +Q (8.20)

Where:
Pn,n is the squared uncertainty of an estimate (covariance matrix) of the

current state
Pn+1,n is the squared uncertainty of a prediction (covariance matrix) for

the next state
F is the state transition matrix that we derived in Appendix C

(“Modeling linear dynamic systems”)
Q is the process noise matrix

8.2.1 The estimate covariance without process noise
Let’s assume that the process noise is equal to zero (Q = 0), then:

Pn+1,n = FPn,nF
T (8.21)

The derivation is relatively straightforward. I’ve shown in chapter 7 - “Essential
background II,” that:

COV (x) = E
(
(x− µx) (x− µx)

T
)

(8.22)

Where vector x is a system state vector.

Therefore:

Pn,n = E
((

x̂n,n − µxn,n

) (
x̂n,n − µxn,n

)T) (8.23)

8.2 Covariance Extrapolation Equation 161

Therefore:

Pn+1,n = E
((

x̂n+1,n − µxn+1,n

) (
x̂n+1,n − µxn+1,n

)T) (8.24)

According to the state extrapolation equation (Equation 8.1):

x̂n+1,n = F x̂n,n +Gûn,n (8.25)

Pn+1,n = E
((

F x̂n,n +Gûn,n − Fµxn,n −Gûn,n

)
×
(
F x̂n,n +Gûn,n − Fµxn,n −Gûn,n

)T) (8.26)

Pn+1,n = E
(
F
(
x̂n,n − µxn,n

) (
F
(
x̂n,n − µxn,n

))T) (8.27)

Apply the matrix transpose property: (AB)T = BTAT

Pn+1,n = E
(
F
(
x̂n,n − µxn,n

) (
x̂n,n − µxn,n

)T
F T
)

(8.28)

Pn+1,n = FE
((

x̂n,n − µxn,n

) (
x̂n,n − µxn,n

)T)
F T (8.29)

Pn+1,n = FPn,nF
T (8.30)

8.2.2 Constructing the process noise matrix Q

As you already know, the system dynamics is described by:

x̂n+1,n = F x̂n,n +Gûn,n +wn (8.31)

Where wn is the process noise at the time step n.

We’ve discussed the process noise and its influence on the Kalman Filter performance
in the “One-dimensional Kalman Filter” section. In the one-dimensional Kalman
Filter, the process noise variance is denoted by q.

In the multidimensional case, the process noise is a covariance matrix denoted by Q.

162 Chapter 8. Kalman Filter Equations Derivation

We’ve seen that the process noise variance has a critical influence on the Kalman
Filter performance. Too small q causes a lag error (see section 5.3 - Example 7). If
the q value is too high, the Kalman Filter follows the measurements (see section 5.4 -
Example 8) and produces noisy estimations.

The process noise can be independent between different state variables. In this case,
the process noise covariance matrix Q is a diagonal matrix:

Q =


q11 0 · · · 0

0 q22 · · · 0
...

...
0 0 · · · qkk

 (8.32)

The process noise can also be dependent. For example, the constant velocity model
assumes zero acceleration (a = 0). However, a random variance in acceleration σ2

a

causes a variance in velocity and position. In this case, the process noise is correlated
with the state variables.

There are two models for the environmental process noise.

• Discrete noise model
• Continuous noise model

8.2.2.1 Discrete noise model

The discrete noise model assumes that the noise is different at each period but is
constant between periods.

Figure 8.5: Discrete Noise.

8.2 Covariance Extrapolation Equation 163

For the constant velocity model, the process noise covariance matrix looks like the
following:

Q =

[
V (x) COV (x, v)

COV (v, x) V (v)

]
(8.33)

We express the position and velocity variance and covariance in terms of the random
acceleration variance of the model: σ2

a.

We derived the matrix elements using the expectation arithmetic rules in chapter 7 -
“Essential background II.”

V (v) = σ2
v = E (v2)− µ2

v = E
(
(a∆t)2

)
− (µa∆t)2

= ∆t2 (E (a2)− µ2
a) = ∆t2σ2

a

(8.34)

V (x) = σ2
x = E (x2)− µ2

x = E

(1

2
a∆t2

)2
−

(
1

2
µa∆t2

)2

=
∆t4

4
(E (a2)− µ2

a) =
∆t4

4
σ2
a

(8.35)

COV (x, v) = COV (v, x) = E (xv)− µxµv

= E

(
1

2
a∆t2a∆t

)
−

(
1

2
µa∆t2µa∆t

)
=

∆t3

2
(E (a2)− µ2

a) =
∆t3

2
σ2
a

(8.36)

Now we can substitute the results into Q matrix:

Q = σ2
a


∆t4

4

∆t3

2

∆t3

2
∆t2

 (8.37)

There are two methods for a faster construction of the Q matrix.

Projection using the state transition matrix

If the dynamic model doesn’t include a control input, we can project the random
variance in acceleration σ2

a on our dynamic model using the state transition matrix.

164 Chapter 8. Kalman Filter Equations Derivation

Let us define a matrix Qa:

Qa =

0 0 0

0 0 0

0 0 1

σ2
a (8.38)

The process noise matrix is:

Q = FQaF
T (8.39)

For the motion model, the F matrix is given by:

F =


1 ∆t

∆t2

2

0 1 ∆t

0 0 1


(8.40)

Q = FQaF
T (8.41)

Q =


1 ∆t

∆t2

2

0 1 ∆t

0 0 1





0 0 0

0 0 0

0 0 1





1 0 0

∆t 1 0

∆t2

2
∆t 1


σ2
a (8.42)

Q =


0 0

∆t2

2

0 0 ∆t

0 0 1





1 0 0

∆t 1 0

∆t2

2
∆t 1


σ2
a (8.43)

8.2 Covariance Extrapolation Equation 165

Q =



∆t4

4

∆t3

2

∆t2

2

∆t3

2
∆t2 ∆t

∆t2

2
∆t 1


σ2
a (8.44)

Projection using the control matrix

If the dynamic model includes a control input, we can compute the Q matrix even
faster. We can project the random variance in acceleration σ2

a on our dynamic model
using the control matrix.

Q = Gσ2
aG

T (8.45)

Where G is the control matrix (or input transition matrix).

For the motion model, the G matrix is given by:

G =


∆t2

2

∆t

 (8.46)

Q = Gσ2
aG

T = σ2
aGGT = σ2

a


∆t2

2

∆t

[∆t2

2
∆t

]
= σ2

a


∆t4

4

∆t3

2

∆t3

2
∆t2

 (8.47)

You can use the above methods to construct the discrete Q matrix.

166 Chapter 8. Kalman Filter Equations Derivation

8.2.2.2 Continuous noise model

The continuous model assumes that the noise changes continuously over time.

Figure 8.6: Continuous Noise.

To derive the process noise covariance matrix for the continuous model Qc, we need
to integrate the discrete process noise covariance matrix Q over time.

Qc =

∫ ∆t

0

Qdt =

∫ ∆t

0

σ2
a


t4

4

t3

2

t3

2
t2

 dt = σ2
a


∆t5

20

∆t4

8

∆t4

8

∆t3

3

 (8.48)

8.2.2.3 Which model to choose?

Before answering this question, you need to select the right value for the process
noise variance. You can calculate it using the stochastic statistics formulas or choose
a reasonable value based on your engineering practice (which is preferable).

In the radar world, the σ2
a depends on the target characteristics and model com-

pleteness. For maneuvering targets, like airplanes, the σ2
a should be relatively high.

For non-maneuvering targets, like rockets, you can use smaller σ2
a. The model

completeness is also a factor in selecting the process noise variance. If your model
includes environmental influences like air drag, then the degree of the process noise
randomness is smaller and vice versa.

8.3 Measurement equation 167

Once you’ve selected a reasonable process noise variance value, you should choose
the noise model. Should it be discrete or continuous?

There is no clear answer to this question. I recommend trying both models and
checking which one performs better with your Kalman Filter. When ∆t is very
small, you can use the discrete noise model. When ∆t is high, it is better to use the
continuous noise model.

8.3 Measurement equation
Until now, we’ve dealt with the future. We’ve derived two Kalman Filter prediction
equations:

• State Extrapolation Equation
• Covariance Extrapolation Equation

From now on, we are going to deal with the present. Let’s start with the Measurement
Equation.

In the “One-dimensional Kalman Filter” section, we denoted the measurement by zn.

The measurement value represents a true system state in addition to the random
measurement noise vn, caused by the measurement device.

The measurement noise variance rn can be constant for each measurement - for
example, scales with a precision of 0.5kg (standard deviation). On the other hand, the
measurement noise variance rn can be different for each measurement - for example,
a thermometer with a precision of 0.5% (standard deviation). In the latter case, the
noise variance depends on the measured temperature.

The generalized measurement equation in matrix form is given by:

168 Chapter 8. Kalman Filter Equations Derivation

Measurement Equation

zn = Hxn + vn (8.49)

Where:

zn is a measurement vector
xn is a true system state (hidden state)
vn is a random noise vector
H is an observation matrix

8.3.1 The observation matrix
In many cases, the measured value is not the desired system state. For example, a
digital electric thermometer measures an electric current, while the system state is
the temperature. There is a need for a transformation of the system state (input) to
the measurement (output).

The purpose of the observation matrix H is to convert the system state into outputs
using linear transformations. The following chapters include examples of observation
matrix usage.

8.3.1.1 Scaling

A range meter sends a signal toward a destination and receives a reflected echo. The
measurement is the time delay between the transmission and reception of the signal.
The system state is the range.

In this case, we need to perform a scaling:

zn =

[
2

c

]
xn + vn (8.50)

H =

[
2

c

]
(8.51)

Where:
c is the speed of light
xn is the range
zn is the measured time delay

8.3 Measurement equation 169

8.3.1.2 State selection

Sometimes certain states are measured while others are not. For example, the first,
third, and fifth states of a five-dimensional state vector are measurable, while the
second and fourth states are not measurable:

zn = Hxn + vn =

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1



x1

x2

x3

x4

x5

+ vn =

x1

x3

x5

+ vn (8.52)

8.3.1.3 Combination of states

Sometimes some combination of states can be measured instead of each separate
state. For example, maybe the lengths of the sides of a triangle are the states, and
only the total perimeter can be measured:

zn = Hxn + vn =
[
1 1 1

]x1

x2

x3

+ vn = (x1 + x2 + x3) + vn (8.53)

8.3.2 Measurement equation dimensions
The following table specifies the matrix dimensions of the measurement equation
variables:

Variable Description Dimension

x state vector nx × 1

z measurements vector nz × 1

H observation matrix nz × nx

v measurement noise vector nz × 1

Table 8.2: Matrix dimensions of the measurement equation variables.

170 Chapter 8. Kalman Filter Equations Derivation

8.4 Interim Summary
It is a good place to stop for a short summary. Before going further, I would like to
summarize what we have learned so far.

As you remember from Part I (if you don’t remember, please review it again), the
Kalman Filter computations are based on five equations.

Two prediction equations:

• State Extrapolation Equation - predicting or estimating the future state based
on the known present estimation.

• Covariance Extrapolation Equation - the measure of uncertainty in our predic-
tion.

Two update equations:

• State Update Equation - estimating the current state based on the known past
estimation and present measurement.

• Covariance Update Equation - the measure of uncertainty in our estimation.

Kalman Gain Equation - required for computation of the update equations. The
Kalman Gain is a “weighting” parameter for the measurement and the past estimations.
It defines the weight of the past estimation and the weight of the measurement in
estimating the current state.

So far, we have learned the two prediction equations in matrix notation and several
auxiliary equations required for computing the main equations.

8.4 Interim Summary 171

8.4.1 Prediction equations

8.4.1.1 State Extrapolation Equation

The general form of the state extrapolation equation in a matrix notation is:

State Extrapolation Equation

x̂n+1,n = F x̂n,n +Gun +wn (8.54)

Where:

x̂n+1,n is a predicted system state vector at time step n+ 1

x̂n,n is an estimated system state vector at time step n

un is a control variable or input variable - a measurable (deterministic)
input to the system

wn is a process noise or disturbance - an unmeasurable input that
affects the state

F is a state transition matrix
G is a control matrix or input transition matrix (mapping control to

state variables)

8.4.1.2 Covariance Extrapolation Equation

The general form of the Covariance Extrapolation Equation is given by:

Covariance Extrapolation Equation

Pn+1,n = FPn,nF
T +Q (8.55)

Where:

Pn,n the covariance matrix of the current state estimation
Pn+1,n is the covariance matrix of the next state estimation (prediction)
F is the state transition matrix that we derived in Appendix C

(“Modeling linear dynamic systems”)
Q is the process noise matrix

172 Chapter 8. Kalman Filter Equations Derivation

8.4.2 Auxiliary equations

8.4.2.1 Measurement Equation

The generalized measurement equation in matrix form is given by:

Measurement Equation

zn = Hxn + vn (8.56)

Where:

zn is a measurement vector
xn is a true system state (hidden state)
vn is a random noise vector
H is an observation matrix

8.4.2.2 Covariance Equations

The terms w and v, which correspond to the process and measurement noise, do not
typically appear directly in the calculations since they are unknown.

Instead, these terms are used to model the uncertainty (or noise) in the equations
themselves.

All covariance equations are covariance matrices in the form of:

E
(
eeT

)
(8.57)

i.e., an expectation of a squared error. See chapter 7 (“Essential background II”) for
more details.

Measurement uncertainty

The measurement covariance is given by:

8.4 Interim Summary 173

Measurement Uncertainty

Rn = E
(
vnv

T
n

)
(8.58)

Where:

Rn is the covariance matrix of the measurement
vn is the measurement error

Process noise uncertainty

The process noise covariance is given by:

Process Noise Uncertainty

Qn = E
(
wnw

T
n

)
(8.59)

Where:

Qn is the covariance matrix of the process noise
wn is the process noise

Estimation uncertainty

The estimation covariance is given by:

Estimation Uncertainty

Pn,n = E
(
ene

T
n

)
= E

(
(xn − x̂n,n) (xn − x̂n,n)

T
)

(8.60)

Where:

Pn,n is the covariance matrix of the estimation error
en is the estimation error
xn is the true system state (hidden state)
x̂n,n is the estimated system state vector at time step n

174 Chapter 8. Kalman Filter Equations Derivation

8.5 State Update Equation
This section is the shortest section of this book. I’ve provided an extensive description
of the State Update Equation in Part I.

The State Update Equation in the matrix form is given by:

Estimation Uncertainty

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) (8.61)

Where:

x̂n,n is an estimated system state vector at time step n

x̂n,n−1 is a predicted system state vector at time step n− 1

Kn is a Kalman Gain
zn is a measurement
H is an observation matrix

You should be familiar with all components of the State Update Equation except
the Kalman Gain in a matrix notation. We derive the Kalman Gain in section 8.7.

You should pay attention to the dimensions. If, for instance, the state vector has 5
dimensions, while only 3 dimensions are measurable (the first, third, and fifth states):

xn =


x1

x2

x3

x4

x5

 zn =

z1z3
z5

 (8.62)

The observation matrix would be a 3× 5 matrix:

H =

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

 (8.63)

8.5 State Update Equation 175

The innovation (zn −Hx̂n,n−1) yields:

(zn −Hx̂n,n−1) =

z1z3
z5

−

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1



x̂1

x̂2

x̂3

x̂4

x̂5

 =

(z1 − x̂1)

(z3 − x̂3)

(z5 − x̂5)

 (8.64)

The Kalman Gain dimensions shall be 5× 3.

8.5.1 State Update Equation dimensions
The following table specifies the matrix dimensions of the State Update Equation
variables:

Variable Description Dimension

x state vector nx × 1

z measurements vector nz × 1

H observation matrix nz × nx

K Kalman gain nx × nz

Table 8.3: Matrix dimensions of the state update equation variables.

176 Chapter 8. Kalman Filter Equations Derivation

8.6 Covariance Update Equation
The Covariance Update Equation is given by:

Covariance Update Equation

Pn,n = (I −KnH)Pn,n−1 (I −KnH)T +KnRnK
T
n (8.65)

Where:

Pn,n is the covariance matrix of the current state estimation
Pn,n−1 is the prior estimate covariance matrix of the current state

(predicted at the previous state)
Kn is a Kalman Gain
H is the observation matrix
Rn is the measurement noise covariance matrix
I is an Identity Matrix (the n× n square matrix with ones on the

main diagonal and zeros elsewhere)

8.6.1 Covariance Update Equation Derivation
This section includes the Covariance Update Equation derivation. Some of you may
find it too detailed, but on the other hand, it will help others to understand better.

You can jump to the next section if you don’t care about the derivation.

For the derivation, I use the following four equations:

Equation Notes

1 x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) State Update Equation

2 zn = Hxn + vn Measurement Equation

3
Pn,n = E

(
ene

T
n

)
= E

(
(xn − x̂n,n) (xn − x̂n,n)

T
) Estimate Covariance

4 Rn = E
(
vnv

T
n

)
Measurement Covariance

Table 8.4: Equations for the Covariance Update Equation derivation.

8.6 Covariance Update Equation 177

We derive the Current Estimate Covariance (Pn,n) as a function of the Kalman Gain
Kn.

Table 8.5: Covariance Update Equation derivation.

Equation Notes

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) State Update Equation

x̂n,n = x̂n,n−1 +Kn(Hxn + vn −Hx̂n,n−1)
Plug the Measurement Equation
into the State Update Equation

en = xn − x̂n,n Estimate error

en = xn − x̂n,n−1 −Kn(Hxn + vn −Hx̂n,n−1) Plug x̂n,n

= xn − x̂n,n−1 −KnHxn −Knvn +KnHx̂n,n−1 Expand

= xn − x̂n,n−1 −KnH(xn − x̂n,n−1)−Knvn Localize (xn − x̂n,n−1)

= (I −KnH)(xn − x̂n,n−1)−Knvn

Pn,n = E(ene
T
n) = E

(
(xn − x̂n,n) (xn − x̂n,n)

T
)

Estimate Covariance

Pn,n = E
((

(I −KnH)(xn − x̂n,n−1)−Knvn
)

×
(
(I −KnH)(xn − x̂n,n−1)−Knvn

)T) Plug en

Pn,n = E

((
(I −KnH)(xn − x̂n,n−1)−Knvn

)
×
((

(I −KnH)(xn − x̂n,n−1)
)T − (Knvn)

T
)) Expand

Continued on next page

178 Chapter 8. Kalman Filter Equations Derivation

Table 8.5: Covariance Update Equation derivation. (Continued)

Pn,n = E
((

(I −KnH)(xn − x̂n,n−1)−Knvn
)

×
(
(xn − x̂n,n−1)

T (I −KnH)T − (Knvn)
T
)) Apply the matrix transpose

property: (AB)T = BTAT

Pn,n = E
(
(I −KnH)(xn − x̂n,n−1)

×(xn − x̂n,n−1)
T (I −KnH)T

−(I −KnH)(xn − x̂n,n−1)(Knvn)
T

−Knvn(xn − x̂n,n−1)
T (I −KnH)T

+Knvn(Knvn)
T
)

Expand

Pn,n = E
(
(I −KnH)(xn − x̂n,n−1)

×(xn − x̂n,n−1)
T (I −KnH)T

)
−E
(
(I −KnH)(xn − x̂n,n−1)(Knvn)

T
)

−E
(
Knvn(xn − x̂n,n−1)

T (I −KnH)T
)

+E
(
Knvn(Knvn)

T
)

Apply the rule
E(X ± Y) = E(X)± E(Y)

E
(
(I −KnH) (xn − x̂n,n−1) (Knvn)

T
)
= 0

E
(
Knvn (xn − x̂n,n−1)

T (I −KnH)T
)
= 0

(xn − x̂n,n−1) is the error of the
prior estimate. It is uncorrelated
with the current measurement
noise vn. The expectation value
of the product of two uncorrelated
variables is zero.

Pn,n = E
(
(I −KnH)(xn − x̂n,n−1)

×(xn − x̂n,n−1)
T (I −KnH)T

)
+E
(
Knvnv

T
nK

T
n

)
Apply the matrix transpose
property: (AB)T = BTAT

Pn,n = (I −KnH)E
(
(xn − x̂n,n−1)

×(xn − x̂n,n−1)
T
)
(I −KnH)T

+KnE
(
vnv

T
n

)
KT

n

Apply the rule E(aX) = aE(X)

Continued on next page

8.7 The Kalman Gain 179

Table 8.5: Covariance Update Equation derivation. (Continued)

E
(
(xn − x̂n,n−1) (xn − x̂n,n−1)

T
)
= Pn,n−1

E
(
vnv

T
n

)
= Rn

Pn,n−1 is the prior estimate
covariance
Rn is the measurement covariance

Pn,n = (I −KnH)Pn,n−1 (I −KnH)T

+KnRnK
T
n

Covariance Update Equation!

8.7 The Kalman Gain
The final equation is the Kalman Gain Equation. The Kalman Gain in matrix
notation is given by:

Kalman Gain

Kn = Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1 (8.66)

Where:

Kn is the Kalman Gain
Pn,n−1 is the prior estimate covariance matrix of the current state

(predicted at the previous step)
H is the observation matrix
Rn is the measurement noise covariance matrix

8.7.1 Kalman Gain Equation Derivation
This chapter includes the derivation of the Kalman Gain Equation. You can jump
to the next section if you don’t care about the derivation.

First, let’s rearrange the Covariance Update Equation:

180 Chapter 8. Kalman Filter Equations Derivation

Equation Notes

Pn,n = (I −KnH)Pn,n−1(I −KnH)T+KnRnK
T
n Covariance Update Equation

Pn,n = (I −KnH)Pn,n−1

(
I − (KnH)T

)
+KnRnK

T
n IT = I

Pn,n = (I −KnH)Pn,n−1

(
I −HTKT

n

)
+KnRnK

T
n

Apply the matrix transpose
property: (AB)T = BTAT

Pn,n = (Pn,n−1 −KnHPn,n−1)
(
I −HTKT

n

)
+KnRnK

T
n

Pn,n = Pn,n−1 − Pn,n−1H
TKT

n −KnHPn,n−1

+KnHPn,n−1H
TKT

n +KnRnK
T
n

Expand

Pn,n = Pn,n−1 − Pn,n−1H
TKT

n −KnHPn,n−1

+Kn

(
HPn,n−1H

T +Rn

)
KT

n

Group the last two terms

Table 8.6: Covariance Update Equation rearrange.

The Kalman Filter is an optimal filter. Thus, we seek a Kalman Gain that
minimizes the estimate variance.

To minimize the estimate variance, we need to minimize the main diagonal (from
the upper left to the lower right) of the covariance matrix Pn,n.

The sum of the main diagonal of the square matrix is the trace of the matrix. Thus,
we need to minimize tr(Pn,n). To find the conditions required to produce a minimum,
we differentiate the trace of Pn,n with respect to Kn and set the result to zero.

8.7 The Kalman Gain 181

Equation Notes

tr (Pn,n) = tr (Pn,n−1)

−tr
(
Pn,n−1H

TKT
n

)
− tr (KnHPn,n−1)

+tr
(
Kn

(
HPn,n−1H

T +Rn

)
KT

n

)
Trace of the Covariance Update
Equation

tr (Pn,n) = tr (Pn,n−1)− 2tr (KnHPn,n−1)

+tr
(
Kn

(
HPn,n−1H

T +Rn

)
KT

n

) The trace of the matrix is equal to the
trace of its transpose (the same main
diagonal)

d
(
tr (Pn,n)

)
dKn

=
d
(
tr (Pn,n−1)

)
dKn

−
d
(
2tr (KnHPn,n−1)

)
dKn

+

d

(
tr
(
Kn

(
HPn,n−1H

T +Rn

)
KT

n

))
dKn

= 0

Differentiate the trace of Pn,n with
respect to Kn

d
(
tr (Pn,n)

)
dKn

= 0− 2 (HPn,n−1)
T

+2Kn

(
HPn,n−1H

T +Rn

)
= 0

d

dA

(
tr (AB)

)
= BT

d

dA

(
tr
(
ABAT

))
= 2AB

See the proof in Appendix D

(HPn,n−1)
T=Kn

(
HPn,n−1H

T +Rn

)
Kn = (HPn,n−1)

T (HPn,n−1H
T +Rn

)−1

Kn = P T
n,n−1H

T
(
HPn,n−1H

T +Rn

)−1 Apply the matrix transpose property:
(AB)T = BTAT

Kn = Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1 The Covariance matrix is a
symmetric matrix: P T

n,n−1 = Pn,n−1

Table 8.7: Kalman Gain Equation Derivation.

182 Chapter 8. Kalman Filter Equations Derivation

8.8 Simplified Covariance Update Equation
In many textbooks, you can find a simplified form of the Covariance Update Equation:

Pn,n = (I −KnH)Pn,n−1 (8.67)

To derive a simplified form of the Covariance Update Equation, plug the Kalman
Gain Equation into the Covariance Update Equation.

Equation Notes

Pn,n = Pn,n−1 − Pn,n−1H
TKT

n −KnHPn,n−1

+Kn

(
HPn,n−1H

T +Rn

)
KT

n

Covariance Update Equation
after expansion (see section 8.6)

Pn,n = Pn,n−1 − Pn,n−1H
TKT

n −KnHPn,n−1

+Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1

×
(
HPn,n−1H

T +Rn

)
KT

n

Substitute the Kalman Gain
Equation

Pn,n = Pn,n−1 − Pn,n−1H
TKT

n −KnHPn,n−1

+Pn,n−1H
TKT

n

(
HPn,n−1H

T +Rn

)−1×

×
(
HPn,n−1H

T +Rn

)
= 1

Pn,n = Pn,n−1 −KnHPn,n−1

Pn,n = (I −KnH)Pn,n−1

Table 8.8: Equations for the Covariance Update Equation derivation.

R Warning! This equation is much more elegant and easier to remember and it
performs well in many cases. However, a minor error in computing the
Kalman Gain (due to round-off) can lead to huge computation errors.
The subtraction (I −KnH) can lead to nonsymmetric matrices due
to floating-point errors. This equation is numerically unstable!

For more details, see [17].

8.9 Summary 183

8.9 Summary
We have derived all five Kalman Filter equations in matrix notation. Let us put
them all together on a single page. The Kalman Filter operates in a “predict-correct”
loop, as shown in the diagram below.

Figure 8.7: Predict-Update Diagram.

Once initialized, the Kalman Filter predicts the system state at the next step. It
also provides the uncertainty of the prediction.

Once the measurement is received, the Kalman Filter updates (or corrects) the
prediction and the uncertainty of the current state. As well the Kalman Filter
predicts the following states, and so on. The following diagram provides a complete
picture of the Kalman Filter operation.

Figure 8.8: The Kalman Filter Diagram.

184 Chapter 8. Kalman Filter Equations Derivation

The following table describes all Kalman Filter Equations.

Equation Name
Alternative names
in the literature

Predict
x̂n+1,n = F x̂n,n +Gun

State
Extrapolation

Predictor Equation
Transition Equation
Prediction Equation
Dynamic Model
State Space Model

Pn+1,n = FPn,nF
T +Q

Covariance
Extrapolation

Predictor Covariance
Equation

Update

x̂n,n = x̂n,n−1 +Kn

×(zn −Hx̂n,n−1)
State Update Filtering Equation

Pn,n = (I −KnH)Pn,n−1

× (I −KnH)T +KnRnK
T
n

Covariance
Update

Corrector Equation

Kn = Pn,n−1H
T

×
(
HPn,n−1H

T +Rn

)−1 Kalman Gain Weight Equation

Auxiliary

zn = Hxn

Measurement
Equation

Rn = E
(
vnv

T
n

) Measurement
Covariance

Measurement Error

Qn = E
(
wnw

T
n

) Process Noise
Covariance

Process Noise Error

Pn,n = E
(
ene

T
n

)
= E

(
(xn − x̂n,n) (xn − x̂n,n)

T
) Estimation

Covariance
Estimation Error

Table 8.9: Kalman Filter equations.

The following table summarizes notation (including differences found in the literature)
and dimensions.

8.9 Summary 185

Term Name Alternative
term

Dimensions

x State Vector nx × 1

z Measurements Vector y nz × 1

F State Transition Matrix Φ,A nx × nx

u Input Variable nu × 1

G Control Matrix B nx × nu

P Estimate Covariance Σ nx × nx

Q Process Noise Covariance nx × nx

R Measurement Covariance nz × nz

w Process Noise Vector y nx × 1

v Measurement Noise Vector nz × 1

H Observation Matrix C nz × nx

K Kalman Gain nx × nz

n Discrete-Time Index k

Table 8.10: Kalman Filter notation.

Dimensions notation:

• nx is a number of states in a state vector
• nz is a number of measured states
• nu is a number of elements of the input variable

9. Multivariate KF Examples

It is the final part of the Multivariate Kalman Filter chapter. It includes two
numerical examples. In the first example, we design a six-dimensional Kalman Filter
without control input. In the second example, we design a two-dimensional Kalman
Filter with a control input.

9.1 Example 9 – vehicle location estimation
In the following example, we implement the Multivariate Kalman Filter using the
material we’ve learned.

Figure 9.1: Vehicle location estimation.

In this example, we estimate the vehicle’s location on the XY plane. The vehicle
has an onboard location sensor that reports X and Y coordinates of the system. We
assume constant acceleration dynamics.

9.1.1 Kalman Filter equations

The state extrapolation equation
First, we derive the state extrapolation equation. As you remember, the general
form of the state extrapolation equation in matrix notation is:

x̂n+1,n = F x̂n,n +Gun +wn (9.1)

188 Chapter 9. Multivariate KF Examples

Where:
x̂n+1,n is a predicted system state vector at time step n+ 1

x̂n,n is an estimated system state vector at time step n

un is a control variable or input variable - a measurable
(deterministic) input to the system

wn is a process noise or disturbance - an unmeasurable input that affects
the state

F is a state transition matrix
G is a control matrix or input transition matrix (mapping control to

state variables)

In this example, there is no control variable u since there is no control input.

For this example, the state extrapolation equation can be simplified to:

x̂n+1,n = F x̂n,n (9.2)

The system state xn is defined by:

xn =



xn

ẋn

ẍn

yn

ẏn

ÿn


(9.3)

The extrapolated vehicle state for time n + 1 can be described by the following
system of equations:

x̂n+1,n = x̂n,n + ˆ̇xn,n∆t+ 1
2
ˆ̈xn,n∆t2

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n∆t

ˆ̈xn+1,n = ˆ̈xn,n

ŷn+1,n = ŷn,n + ˆ̇yn,n∆t+ 1
2
ˆ̈yn,n∆t2

ˆ̇yn+1,n = ˆ̇yn,n + ˆ̈yn,n∆t

ˆ̈yn+1,n = ˆ̈yn,n

(9.4)

9.1 Example 9 – vehicle location estimation 189

In matrix form:

x̂n+1,n

ˆ̇xn+1,n

ˆ̈xn+1,n

ŷn+1,n

ˆ̇yn+1,n

ˆ̈yn+1,n


=



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1





x̂n,n

ˆ̇xn,n

ˆ̈xn,n

ŷn,n
ˆ̇yn,n
ˆ̈yn,n


(9.5)

The covariance extrapolation equation
The general form of the Covariance Extrapolation Equation is given by:

Pn+1,n = FPn,nF
T +Q (9.6)

Where:
Pn,n is the covariance matrix of the current state estimation
Pn+1,n is the covariance matrix of the next state estimation (prediction)
F is the state transition matrix that we derived in Appendix C

(“Modeling linear dynamic systems”)
Q is the process noise matrix

The estimate covariance matrix is:

P =



px pxẋ pxẍ pxy pxẏ pxÿ

pẋx pẋ pẋẍ pẋy pẋẏ pẋÿ

pẍx pẍẋ pẍ pẍy pẍẏ pẍÿ

pyx pyẋ pyẍ py pyẏ pyÿ

pẏx pẏẋ pẏẍ pẏy pẏ pẏÿ

pÿx pÿẋ pÿẍ pÿy pÿẏ pÿ


(9.7)

The elements on the main diagonal of the matrix are the variances of the estimation:

• px is the variance of the X coordinate position estimation
• pẋ is the variance of the X coordinate velocity estimation
• pẍ is the variance of the X coordinate acceleration estimation
• py is the variance of the Y coordinate position estimation
• pẏ is the variance of the Y coordinate velocity estimation
• pÿ is the variance of the Y coordinate acceleration estimation
• The off-diagonal entries are covariances

190 Chapter 9. Multivariate KF Examples

We assume that the estimation errors in X and Y axes are not correlated so that
the mutual terms can be set to zero.

P =



px pxẋ pxẍ 0 0 0

pẋx pẋ pẋẍ 0 0 0

pẍx pẍẋ pẍ 0 0 0

0 0 0 py pyẏ pyÿ

0 0 0 pẏy pẏ pẏÿ

0 0 0 pÿy pÿẏ pÿ


(9.8)

We have already derived the state transition matrix F . Now we shall derive the
process noise Q matrix.

The process noise matrix
We assume a discrete noise model - the noise is different at each time sample but is
constant between time samples.

The process noise matrix for the two-dimensional constant acceleration model looks
as follows:

Q =



σ2
x σ2

xẋ σ2
xẍ σ2

xy σ2
xẏ σ2

xÿ

σ2
ẋx σ2

ẋ σ2
ẋẍ σ2

ẋy σ2
ẋẏ σ2

ẋÿ

σ2
ẍx σ2

ẍẋ σ2
ẍ σ2

ẍy σ2
ẍẏ σ2

ẍÿ

σ2
yx σ2

yẋ σ2
yẍ σ2

y σ2
yẏ σ2

yÿ

σ2
ẏx σ2

ẏẋ σ2
ẏẍ σ2

ẏy σ2
ẏ σ2

ẏÿ

σ2
ÿx σ2

ÿẋ σ2
ÿẍ σ2

ÿy σ2
ÿẏ σ2

ÿ


(9.9)

We assume that the process noise in X and Y axes is not correlated so that the
mutual terms can be set to zero.

Q =



σ2
x σ2

xẋ σ2
xẍ 0 0 0

σ2
ẋx σ2

ẋ σ2
ẋẍ 0 0 0

σ2
ẍx σ2

ẍẋ σ2
ẍ 0 0 0

0 0 0 σ2
y σ2

yẏ σ2
yÿ

0 0 0 σ2
ẏy σ2

ẏ σ2
ẏÿ

0 0 0 σ2
ÿy σ2

ÿẏ σ2
ÿ


(9.10)

We’ve already derived the Q matrix for the constant acceleration motion model
(Equation 8.44). The Q matrix for our example is:

9.1 Example 9 – vehicle location estimation 191

Q =



∆t4

4

∆t3

2

∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0
∆t4

4

∆t3

2

∆t2

2

0 0 0
∆t3

2
∆t2 ∆t

0 0 0
∆t2

2
∆t 1



σ2
a (9.11)

Where:

• ∆t is the time between successive measurements
• σ2

a is a random variance in acceleration

Now we can write down the covariance extrapolation equation for our example:

Pn+1,n = FPn,nF
T +Q (9.12)

192 Chapter 9. Multivariate KF Examples



pxn+1,n pxẋn+1,n pxẍn+1,n 0 0 0

pẋxn+1,n pẋn+1,n pẋẍn+1,n 0 0 0

pẍxn+1,n pẍẋn+1,n pẍn+1,n 0 0 0

0 0 0 pyn+1,n pyẏn+1,n pyÿn+1,n

0 0 0 pẏyn+1,n pẏn+1,n pẏÿn+1,n

0 0 0 pÿyn+1,n pÿẏn+1,n pÿn+1,n



=



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1



×



pxn,n pxẋn,n pxẍn,n 0 0 0

pẋxn,n pẋn,n pẋẍn,n 0 0 0

pẍxn,n pẍẋn,n pẍn,n 0 0 0

0 0 0 pyn,n pyẏn,n pyÿn,n

0 0 0 pẏyn,n pẏn,n pẏÿn,n

0 0 0 pÿyn,n pÿẏn,n pÿn,n


×



1 0 0 0 0 0

∆t 1 0 0 0 0

0.5∆t2 ∆t 1 0 0 0

0 0 0 1 0 0

0 0 0 ∆t 1 0

0 0 0 0.5∆t2 ∆t 1



+



∆t4

4

∆t3

2

∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0
∆t4

4

∆t3

2

∆t2

2

0 0 0
∆t3

2
∆t2 ∆t

0 0 0
∆t2

2
∆t 1



σ2
a

(9.13)

9.1 Example 9 – vehicle location estimation 193

The measurement equation
The generalized measurement equation in a matrix form is given by:

zn = Hxn + vn (9.14)

Where:

zn is a measurement vector
xn is a true system state (hidden state)
vn is a random noise vector
H is an observation matrix

The measurement provides us only X and Y coordinates of the vehicle.

So: zn =

[
xn,measured

yn,measured

]

zn = Hxn (9.15)

[
xn,measured

yn,measured

]
= H



xn

ẋn

ẍn

yn

ẏn

ÿn


(9.16)

The dimension of zn is 2×1 and the dimension of xn is 6×1. Therefore the dimension
of the observation matrix H shall be 2× 6.

H =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
(9.17)

194 Chapter 9. Multivariate KF Examples

The measurement uncertainty
The measurement covariance matrix is:

Rn =

[
σ2
xm

σ2
yxm

σ2
xym σ2

ym

]
(9.18)

The subscript m is for measurement uncertainty.

Assume that the x and y measurements are uncorrelated, i.e., the error in the x

coordinate measurement doesn’t depend on the error in the y coordinate measurement.

Rn =

[
σ2
xm

0

0 σ2
ym

]
(9.19)

In real-life applications, the measurement uncertainty can differ between measure-
ments. In many systems, the measurement uncertainty depends on the measurement
SNR, the angle between the sensor (or sensors) and target, signal frequency, and
many other parameters.

For the sake of the example simplicity, we assume a constant measurement uncertainty:

R1 = R2...Rn−1 = Rn = R (9.20)

The Kalman Gain
The Kalman Gain in matrix notation is given by:

Kn = Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1 (9.21)

Where:
Kn is the Kalman Gain
Pn,n−1 is the prior estimate covariance matrix of the current state (predicted

at the previous step)
H is the observation matrix
Rn is the measurement noise covariance matrix

9.1 Example 9 – vehicle location estimation 195

We have already derived all the building blocks of the Kalman Gain:



K1,1n
K1,2n

K2,1n
K2,2n

K3,1n
K3,2n

K4,1n
K4,2n

K5,1n
K5,2n

K6,1n
K6,2n

 =



pxn,n−1
pxẋn,n−1

pxẍn,n−1
0 0 0

pẋxn,n−1
pẋn,n−1

pẋẍn,n−1
0 0 0

pẍxn,n−1
pẍẋn,n−1

pẍn,n−1
0 0 0

0 0 0 pyn,n−1
pyẏn,n−1

pyÿn,n−1

0 0 0 pẏyn,n−1
pẏn,n−1

pẏÿn,n−1

0 0 0 pÿyn,n−1
pÿẏn,n−1

pÿn,n−1





1 0
0 0
0 0
0 1
0 0
0 0



×


[
1 0 0 0 0 0
0 0 0 1 0 0

]


pxn,n−1
pxẋn,n−1

pxẍn,n−1
0 0 0

pẋxn,n−1
pẋn,n−1

pẋẍn,n−1
0 0 0

pẍxn,n−1
pẍẋn,n−1

pẍn,n−1
0 0 0

0 0 0 pyn,n−1
pyẏn,n−1

pyÿn,n−1

0 0 0 pẏyn,n−1
pẏn,n−1

pẏÿn,n−1

0 0 0 pÿyn,n−1
pÿẏn,n−1

pÿn,n−1





1 0
0 0
0 0
0 1
0 0
0 0

+

[
σ2
xm

0
0 σ2

ym

]


−1

(9.22)

The state update equation
The State Update Equation in matrix form is given by:

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) (9.23)

Where:

x̂n,n is an estimated system state vector at time step n

x̂n,n−1is a predicted system state vector at time step n− 1

Kn is a Kalman Gain
zn is a measurement
H is an observation matrix

We have already defined all the building blocks of the state update equation.

The covariance update equation
The Covariance Update Equation in a matrix form is given by:

Pn,n = (I −KnH)Pn,n−1 (I −KnH)T +KnRnK
T
n (9.24)

Where:

196 Chapter 9. Multivariate KF Examples

Pn,n is the covariance matrix of the current state estimation
Pn,n−1 is the prior estimate covariance matrix of the current state (predicted

at the previous state)
Kn is a Kalman Gain
H is the observation matrix
Rn is the measurement noise covariance matrix
I is an Identity Matrix (the n× n square matrix with ones on the main

diagonal and zeros elsewhere)

9.1.2 The numerical example
Now we are ready to solve the numerical example. Let us assume a vehicle moving in
a straight line in the X direction with a constant velocity. After traveling 400 meters
the vehicle turns right, with a turning radius of 300 meters. During the turning
maneuver, the vehicle experiences acceleration due to the circular motion (angular
acceleration).

The following chart depicts the vehicle movement.

Figure 9.2: Vehicle trajectory.

9.1 Example 9 – vehicle location estimation 197

• The measurements period: ∆t = 1s

• The random acceleration standard deviation: σa = 0.2m
s2

• The measurement error standard deviation: σxm = σym = 3m

• The state transition matrix F would be:

F =



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1


=



1 1 0.5 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0.5

0 0 0 0 1 1

0 0 0 0 0 1


• The process noise matrix Q would be:

Q =



∆t4

4
∆t3

2
∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0 ∆t4

4
∆t3

2
∆t2

2

0 0 0 ∆t3

2
∆t2 ∆t

0 0 0 ∆t2

2
∆t 1


σ2
a =



1
4

1
2

1
2

0 0 0
1
2

1 1 0 0 0
1
2

1 1 0 0 0

0 0 0 1
4

1
2

1
2

0 0 0 1
2

1 1

0 0 0 1
2

1 1


0.22

• The measurement covariance R would be:

Rn =

[
σ2
xm

0

0 σ2
ym

]
=

[
9 0

0 9

]

The following table contains the set of 35 noisy measurements:

198 Chapter 9. Multivariate KF Examples

1 2 3 4 5 6 7 8

x(m) 301.5 298.23 297.83 300.42 301.94 299.5 305.98 301.25

y(m) -401.46 -375.44 -346.15 -320.2 -300.08 -274.12 -253.45 -226.4

9 10 11 12 13 14 15 16 17

299.73 299.2 298.62 301.84 299.6 295.3 299.3 301.95 296.3

-200.65 -171.62 -152.11 -125.19 -93.4 -74.79 -49.12 -28.73 2.99

18 19 20 21 22 23 24 25 26

295.11 295.12 289.9 283.51 276.42 264.22 250.25 236.66 217.47

25.65 49.86 72.87 96.34 120.4 144.69 168.06 184.99 205.11

27 28 29 30 31 32 33 34 35

199.75 179.7 160 140.92 113.53 93.68 69.71 45.93 20.87

221.82 238.3 253.02 267.19 270.71 285.86 288.48 292.9 298.77

Table 9.1: Example 9 measurements.

9.1.2.1 Iteration Zero

Initialization

We don’t know the vehicle location; we set the initial position, velocity, and accelera-
tion to 0.

x̂0,0 =



0

0

0

0

0

0


Since our initial state vector is a guess, we set a very high estimate uncertainty. The
high estimate uncertainty results in a high Kalman Gain by giving a high weight to
the measurement.

9.1 Example 9 – vehicle location estimation 199

P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


Prediction

x̂1,0 = F x̂0,0 =



0

0

0

0

0

0



P1,0 = FP0,0F
T +Q =



1125 750 250 0 0 0

750 1000 500 0 0 0

250 500 500 0 0 0

0 0 0 1125 750 250

0 0 0 750 1000 500

0 0 0 250 500 500


9.1.2.2 First Iteration

Step 1 - Measure

The measurement values:

z1 =

[
301.5

−401.46

]

Step 2 - Update

The Kalman Gain calculation:

K1 = P1,0H
T
(
HP1,0H

T +R
)−1

=



0.9921 0

0.6614 0

0.2205 0

0 0.9921

0 0.6614

0 0.2205



200 Chapter 9. Multivariate KF Examples

As you can see, the Kalman Gain for a position is 0.9921, which means that the weight
of the first measurement is significantly higher than the weight of the estimation.
The weight of the estimation is negligible.

Estimate the current state:

x̂1,1 = x̂1,0 +K1(z1 −Hx̂1,0) =



299.1

199.4

66.47

−398.27

−265.52

−88.51


Update the current estimate uncertainty:

P1,1 = (I −K1H)P1,0 (I −K1H)T +K1RKT
1 =



8.93 5.95 2 0 0 0
5.95 504 334.7 0 0 0
2 334.7 444.9 0 0 0
0 0 0 8.93 5.95 2
0 0 0 5.95 504 334.7
0 0 0 2 334.7 444.9


Step 3 - Predict

x̂2,1 = F x̂1,1 =



531.75

265.88

66.47

−708.05

−354.03

−88.51



P2,1 = FP1,1F
T +Q =



972 1236 559 0 0 0

1236 1618 780 0 0 0

559 780 445 0 0 0

0 0 0 972 1236 559

0 0 0 1236 1618 780

0 0 0 559 780 445


Our prediction uncertainty is still very high.

9.1.2.3 Second Iteration

Step 1 - Measure

The measurement values:

9.1 Example 9 – vehicle location estimation 201

z2 =

[
298.23

−375.44

]

Step 2 - Update

The Kalman Gain calculation:

K2 = P2,1H
T
(
HP2,1H

T +R
)−1

=



0.9908 0

1.26 0

0.57 0

0 0.9908

0 1.26

0 0.57


Estimate the current state:

x̂2,2 = x̂2,1 +K2(z2 −Hx̂2,1) =



300.37

−28.22

−66.53

−378.49

64.87

100.93


Update the current estimate uncertainty:

P2,2 = (I −K2H)P2,1 (I −K2H)T +K2RKT
2 =



8.92 11.33 5.13 0 0 0
11.33 61.1 75.4 0 0 0
5.13 75.4 126.5 0 0 0
0 0 0 8.92 11.33 5.13
0 0 0 11.33 61.1 75.4
0 0 0 5.13 75.4 126.5


Step 3 - Predict

P3,2 = FP2,2F
T +Q =



204.9 254 143.8 0 0 0

254 338.5 202 0 0 0

143.8 202 126.5 0 0 0

0 0 0 204.9 254 143.8

0 0 0 254 338.5 202

0 0 0 143.8 202 126.5


Our prediction uncertainty is still very high.

At this point, it would be reasonable to jump to the last Kalman Filter iteration.

202 Chapter 9. Multivariate KF Examples

9.1.2.4 Thirty-Fifth Iteration

Step 1 - Measure

The measurement values:

z35 =

[
20.87

298.77

]

Step 2 - Update

The Kalman Gain calculation:

K35 = P35,34H
T
(
HP35,34H

T +R
)−1

=



0.5556 0

0.2222 0

0.0444 0

0 0.5556

0 0.2222

0 0.0444


The Kalman Gain for the position has converged to 0.56, meaning that the measure-
ment and estimation weights are almost equal.

Estimate the current state:

x̂35,35 = x̂35,34 +K35(z35 −Hx̂35,34) =



19.3

−25.99

−0.74

297.79

2.03

−1.86


Update the current estimate uncertainty:

P35,35 = (I −K35H)P35,34 (I −K35H)T +K35RKT
35 =



5 2 0.4 0 0 0
2 1.4 0.4 0 0 0
0.4 0.4 0.16 0 0 0
0 0 0 5 2 0.4
0 0 0 2 1.4 0.4
0 0 0 0.4 0.4 0.16


At this point, the position variance px = py = 5, which means that the standard
deviation of the estimate is

√
5m.

9.1 Example 9 – vehicle location estimation 203

Step 3 - Predict

x̂36,35 = F x̂35,35 =



−7.05

−26.73

−0.74

298.89

0.17

−1.87



P36,35 = FP35,35F
T +Q =



11.25 4.5 0.9 0 0 0

4.5 2.4 0.6 0 0 0

0.9 0.6 0.2 0 0 0

0 0 0 11.25 4.5 0.9

0 0 0 4.5 2.4 0.6

0 0 0 0.9 0.6 0.2


9.1.3 Example analysis

The following chart demonstrates the KF location and velocity estimation perfor-
mance.

The chart on the left compares the true, measured, and estimated values of the
vehicle position. Two charts on the right compare the true, measured, and estimated
values of x-axis velocity and y-axis velocity.

Figure 9.3: Example 9: true value, measured values and estimates.

As you can see, the Kalman Filter succeeds in tracking the vehicle.

204 Chapter 9. Multivariate KF Examples

Let us zoom the linear part of the vehicle motion and the turning maneuver part.

Figure 9.4: Example 9: true value, measured values and estimates - zoom.

The circles on the plot represent the 95% confidence ellipse. Since the x and y axes’
measurement errors are equal, the confidence ellipse is a circle.

While the vehicle travels along a straight line, the acceleration is constant and equal
to zero. However, during the turn maneuver, the vehicle experiences acceleration
due to the circular motion - angular acceleration.

Recall from an introductory physics that angular acceleration is α = ∆V
R∆t

, where ∆t

is the time interval, ∆V is the velocity difference within the time interval, and R is
the circle radius.

Our Kalman Filter is designed for a constant acceleration model. Nevertheless, it
succeeds in tracking maneuvering vehicle due to a properly chosen σ2

a parameter.

I would like to encourage the readers to implement this example in software and see
how different values of σ2

a or R influence the actual Kalman Filter accuracy, Kalman
Gain convergence, and estimation uncertainty.

9.2 Example 10 – rocket altitude estimation 205

9.2 Example 10 – rocket altitude estimation
In this example, we estimate the altitude of a rocket. The rocket is equipped with an
onboard altimeter that provides altitude measurements. In addition to an altimeter,
the rocket is equipped with an accelerometer that measures the rocket’s acceleration.

The accelerometer serves as a control input to the Kalman Filter.

We assume constant acceleration dynamics.

Figure 9.5: Example 10: rocket altitude estimation.

Accelerometers don’t sense gravity. An accelerometer at rest on a table measures 1g

upwards, while an accelerometer in free fall measures zero acceleration. Thus, we
need to subtract the gravitational acceleration constant g from each accelerometer
measurement.

The accelerometer measurement at time step n is:

an = ẍ− g + ϵ (9.25)

Where:

206 Chapter 9. Multivariate KF Examples

ẍ is the actual acceleration of the object (the second derivative of the
object position)

g is the gravitational acceleration constant; g = −9.8m
s2

ϵ is the accelerometer measurement error

9.2.1 Kalman Filter equations

The state extrapolation equation
The general form of the state extrapolation equation in matrix notation is:

x̂n+1,n = F x̂n,n +Gun +wn (9.26)

Where:
x̂n+1,n is a predicted system state vector at time step n+ 1

x̂n,n is an estimated system state vector at time step n

un is a control variable or input variable - a measurable
(deterministic) input to the system

wn is a process noise or disturbance - an unmeasurable input that affects
the state

F is a state transition matrix
G is a control matrix or input transition matrix (mapping control to

state variables)

In this example, we have a control variable u, which is based on the accelerometer
measurement.

The system state xn is defined by:

xn =

[
xn

ẋn

]
(9.27)

Where:
xn is the rocket altitude at time n

ẋn is the rocket velocity at time n

We can express the state extrapolation equation as follows:[
x̂n+1,n

ˆ̇xn+1,n

]
=

[
1 ∆t

0 1

][
x̂n,n

ˆ̇xn,n

]
+

[
0.5∆t2

∆t

]
(an + g) (9.28)

9.2 Example 10 – rocket altitude estimation 207

In the above equation:

F =

[
1 ∆t

0 1

]
(9.29)

G =

[
0.5∆t2

∆t

]
(9.30)

un = (an + g) (9.31)

The covariance extrapolation equation
The general form of the Covariance Extrapolation Equation is:

Pn+1,n = FPn,nF
T +Q (9.32)

Where:
Pn,n is the covariance matrix of the current state estimation
Pn+1,n is the covariance matrix of the next state estimation (prediction)
F is the state transition matrix that we derived in Appendix C

(“Modeling linear dynamic systems”)
Q is the process noise matrix

The estimate covariance in matrix form is:

P =

[
px pxẋ

pẋx pẋ

]
(9.33)

The elements of the main diagonal of the matrix are the variances of the estimation:

• px is the variance of the altitude estimation
• pẋ is the variance of the velocity estimation
• The off-diagonal entries are covariances

We have already derived the state transition matrix F . Now we shall derive the
process noise Q matrix.

The process noise matrix
We assume a discrete noise model - the noise is different at each time sample but is
constant between time samples.

208 Chapter 9. Multivariate KF Examples

The process noise matrix for a constant acceleration model looks like this:

Q =

[
σ2
x σ2

xẋ

σ2
ẋx σ2

ẋ

]
(9.34)

We’ve already derived the Q matrix for the constant acceleration model (subsec-
tion 8.2.2). The Q matrix for our example is:

Q =


∆t4

4

∆t3

2

∆t3

2
∆t2

 ϵ2 (9.35)

Where:
∆t is the time between successive measurements
ϵ2 is the random variance in accelerometer measurement

In the previous example, we used the system’s random variance in acceleration σ2
a as

a multiplier of the process noise matrix. But here, we have an accelerometer that
measures the system’s random acceleration. The accelerometer error v is much lower
than the system’s random acceleration; therefore, we use ϵ2 as a multiplier of the
process noise matrix.

It makes our estimation uncertainty much lower!

Now we can write down the covariance extrapolation equation for our example:

Pn+1,n = FPn,nF
T +Q (9.36)

[
pxn+1,n pxẋn+1,n

pẋxn+1,n pẋn+1,n

]
=

[
1 ∆t

0 1

]
×

[
pxn,n pxẋn,n

pẋxn,n pẋn,n

]
×

[
1 0

∆t 1

]
+

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]
ϵ2 (9.37)

9.2 Example 10 – rocket altitude estimation 209

R According to the “Constructing the process noise matrix” (subsection 8.2.2),
the size of the Q matrix for constant velocity model should be 2× 2, and the
size of the Q matrix for constant acceleration model should be 3× 3.

In this example, the acceleration is handled by control input (therefore, it is
not part of F matrix, and the Q matrix is 2× 2). Without an external control
input, the process matrix would be 3× 3.

The measurement equation
The generalized measurement equation in matrix form is given by:

zn = Hxn + vn (9.38)

Where:
zn is a measurement vector
xn is a true system state (hidden state)
vn is a random noise vector
H is an observation matrix

The measurement provides only the altitude of the rocket:: zn = [xn,measured]

zn = Hxn (9.39)

[xn,measured] = H

[
xn

ẋn

]
(9.40)

The dimension of zn is 1× 1 and the dimension of xn is 2× 1, so the dimension of
the observation matrix H is 1× 2.

H =
[
1 0

]
(9.41)

The measurement uncertainty
The measurement covariance matrix is:

Rn =
[
σ2
xm

]
(9.42)

The subscript m means the “measurement”.

210 Chapter 9. Multivariate KF Examples

For the sake of the example simplicity, we assume a constant measurement uncertainty:

R1 = R2...Rn−1 = Rn = R (9.43)

The Kalman Gain
The Kalman Gain in matrix notation is given by:

Kn = Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1 (9.44)

Where:
Kn is the Kalman Gain
Pn,n−1 is the prior estimate uncertainty (covariance) matrix of the current

state (predicted at the previous step)
H is the observation matrix
Rn is the Measurement Uncertainty (measurement noise covariance matrix)

We have already derived all the building blocks of the Kalman Gain:

[
K1,1n

K2,1n

]
=

[
pxn,n−1 pxẋn,n−1

pẋxn,n−1 pẋn,n−1

][
1

0

]
×

([
1 0

] [pxn,n−1 pxẋn,n−1

pẋxn,n−1 pẋn,n−1

][
1

0

]
+
[
σ2
xm

])−1

(9.45)

The state update equation
The State Update Equation in matrix form is given by:

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) (9.46)

Where:
x̂n,n is an estimated system state vector at time step n

x̂n,n−1 is a predicted system state vector at time step n− 1

Kn is a Kalman Gain
zn is a measurement
H is an observation matrix

We have already defined all the building blocks of the state update equation.

9.2 Example 10 – rocket altitude estimation 211

The covariance update equation
The Covariance Update Equation in a matrix form is given by:

Pn,n = (I −KnH)Pn,n−1 (I −KnH)T +KnRnK
T
n (9.47)

Where:
Pn,n is the uncertainty (covariance) matrix of the current state estimation
Pn,n−1 is the prior estimate uncertainty (covariance) matrix of the current

state (predicted at the previous state)
Kn is a Kalman Gain
H is the observation matrix
Rn is the Measurement Uncertainty (measurement noise covariance matrix)
I is an Identity Matrix (the n× n square matrix with ones on the main

diagonal and zeros elsewhere)

9.2.2 The numerical example
Let us assume a vertically boosting rocket with constant acceleration. The rocket is
equipped with an altimeter that provides altitude measurements and an accelerometer
that serves as a control input.

• The measurements period: ∆t = 0.25s

• The rocket acceleration: ẍ = 30m
s2

• The altimeter measurement error standard deviation: σxm = 20m

• The accelerometer measurement error standard deviation: ϵ = 0.1m
s2

• The state transition matrix F would be:

F =

[
1 ∆t

0 1

]
=

[
1 0.25

0 1

]

• The control matrix G would be:

G =

[
0.5∆t2

∆t

]
=

[
0.0313

0.25

]

• The process noise matrix Q would be:

Q =

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]
σ2
a =

[
0.254

4
0.253

2
0.253

2
0.252

]
0.12

• The measurement uncertainty R would be:

Rn = R =
[
σ2
xm

]
= 400

212 Chapter 9. Multivariate KF Examples

The following table contains the set of 30 noisy measurements of the altitude hn and
acceleration an:

1 2 3 4 5 6 7 8

hn(m) 6.43 1.3 39.43 45.89 41.44 48.7 78.06 80.08

an(m/s2) 39.81 39.67 39.81 39.84 40.05 39.85 39.78 39.65

9 10 11 12 13 14 15 16 17

61.77 75.15 110.39 127.83 158.75 156.55 213.32 229.82 262.8

39.67 39.78 39.59 39.87 39.85 39.59 39.84 39.9 39.63

18 19 20 21 22 23 24 25 26

297.57 335.69 367.92 377.19 411.18 460.7 468.39 553.9 583.97

39.59 39.76 39.79 39.73 39.93 39.83 39.85 39.94 39.86

27 28 29 30

655.15 723.09 736.85 787.22

39.76 39.86 39.74 39.94

Table 9.2: Example 10 measurements.

9.2.2.1 Iteration Zero

Initialization

We don’t know the rocket’s location; we set the initial position and velocity to 0.

x̂0,0 =

[
0

0

]

We also don’t know the rocket’s acceleration, but we can assume it’s greater than
zero. Let’s assume:

u0 = 0

Since our initial state vector is a guess, we set a very high estimate uncertainty. The
high estimate uncertainty results in high Kalman Gain, giving a high weight to the

9.2 Example 10 – rocket altitude estimation 213

measurement.

P0,0 =

[
500 0

0 500

]

Prediction

Now we can predict the next state based on the initialization values.

x̂1,0 = F x̂0,0 +Gu0 =

[
1 0.25

0 1

][
0

0

]
+

[
0.0313

0.25

]
0 =

[
0

0

]

P1,0 = FP0,0F
T +Q =

[
1 0.25

0 1

][
500 0

0 500

][
1 0

0.25 1

]
+

[
0.254

4
0.253

2
0.253

2
0.252

]
0.12

=

[
531.25 125

125 500

]

9.2.2.2 First Iteration

Step 1 - Measure

The measurement values:

z1 = 6.43

u1 = 39.81

Step 2 - Update

The Kalman Gain calculation:

K1 = P1,0H
T
(
HP1,0H

T +R
)−1

=

[
0.57

0.13

]

Estimate the current state:

x̂1,1 = x̂1,0 +K1(z1 −Hx̂1,0) =

[
3.67

0.86

]

Update the current estimate uncertainty:

P1,1 = (I −K1H)P1,0 (I −K1H)T +K1RKT
1 =

[
228.2 53.7

53.7 483.2

]

Step 3 - Predict

x̂2,1 = F x̂1,1 +Gu1 =

[
1 0.25

0 1

][
3.67

0.86

]
+

[
0.0313

0.25

]
(39.81 + (−9.8)) =

[
4.82

8.36

]

214 Chapter 9. Multivariate KF Examples

P2,1 = FP1,1F
T +Q =

[
285.2 174.5

174.5 483.2

]

Our prediction uncertainty is still very high.

9.2.2.3 Second Iteration

Step 1 - Measure

The measurement values:
z2 = 1.3

u2 = 39.67

Step 2 - Update

The Kalman Gain calculation:

K2 = P2,1H
T
(
HP2,1H

T +R
)−1

=

[
0.42

0.26

]

Estimate the current state:

x̂2,2 = x̂2,1 +K2(z2 −Hx̂2,1) =

[
3.36

7.47

]

Update the current estimate uncertainty:

P2,2 = (I −K2H)P2,1 (I −K2H)T +K2RKT
2 =

[
166.5 101.9

101.9 438.8

]

Step 3 - Predict

x̂3,2 = F x̂2,2 +Gu2 =

[
6.16

14.93

]

P3,2 = FP2,2F
T +Q =

[
244.9 211.6

211.6 438.8

]

At this point, it would be reasonable to jump to the last Kalman Filter iteration.

9.2.2.4 Thirtieth Iteration

Step 1 - Measure

The measurement values:
z30 = 787.22

u30 = 39.94

Step 2 - Update

The Kalman Gain calculation:

9.2 Example 10 – rocket altitude estimation 215

K30 = P30,29H
T
(
HP30,29H

T +R
)−1

=

[
0.12

0.02

]

The Kalman Gain for altitude converged to 0.12, which means that the estimation
weight is much higher than the measurement weight.

Estimate the current state:

x̂30,30 = x̂30,29 +K30(z30 −Hx̂30,29) =

[
797.07

215.7

]

Update the current estimate uncertainty:

P30,30 = (I −K30H)P30,29 (I −K35H)T +K30RKT
30 =

[
49.3 9.7

9.7 2.6

]

At this point, the altitude variance px = 49.3, which means that the standard
deviation of the estimate is

√
49.3m = 7.02m (remember that the standard deviation

of the measurement is 20m).

Step 3 - Predict

x̂31,30 = F x̂30,30 +Gu30 =

[
851.9

223.2

]

P31,30 = FP30,30F
T +Q =

[
54.3 10.4

10.4 2.6

]

216 Chapter 9. Multivariate KF Examples

9.2.3 Example analysis
The following chart compares the true, measured, and estimated values of the rocket
altitude.

Figure 9.6: Example 10: true value, measured values and estimates of the rocket altitude.

We can see a good KF tracking performance and convergence.

The following chart compares the true value, measured values, and estimates of the
rocket velocity. The confidence interval is 95%. (You can find the guidelines for a
confidence interval calculation in Appendix B).

Figure 9.7: Example 10: true value, measured values and estimates of the rocket velocity.

It takes about 2.5 seconds to converge the estimates to the true rocket velocity.

9.2 Example 10 – rocket altitude estimation 217

In the beginning, the estimated altitude is influenced by measurements, and it is not
aligned well with the true rocket altitude since the measurements are very noisy.

But as the KF converges, the noisy measurement has less influence, and the estimated
altitude is well aligned with the true altitude.

In this example, we don’t have any maneuvers that cause acceleration changes, but
if we had, the control input (accelerometer) would update the state extrapolation
equation.

III Non-linear
Kalman Filters

10 Foreword . 221

11 Essential background III . 223

12 Non-linearity problem . 227

13 Extended Kalman Filter (EKF) 237

14 Unscented Kalman Filter (UKF) 283

15 Non-linear filters comparison 333

16 Conclusion . 337

10. Foreword

Once you have mastered the multi-dimensional (or multivariate) Kalman Filter, you
are ready to tackle the Non-linear Kalman Filters.

The Kalman Filter solves the estimation problem for linear systems. However, most
real-life systems are non-linear.

For non-linear systems handling, the Linear Approximation techniques shall be
applied. This part describes two common modifications of the Kalman Filter that
perform Linear Approximation:

• Extended Kalman Filter (EKF)
• Unscented Kalman Filter (UKF) or Sigma-point Kalman Filter (SPKF)

The EKF performs analytic linearization of the model at each point in time. EKF
is the most common non-linear Kalman Filter.

The UKF performs statistical linearization of the model at each point in time.
The UKF is considered to be superior to the EKF.

While the standard Linear Kalman Filter (LKF) is an optimal filter since we
minimize the estimate uncertainty (see subsection 8.7.1 - “Kalman Gain Equation
Derivation”), all Kalman Filter modifications for non-linear systems are sub-optimal
since we use approximated models.

This chapter describes the EKF and the UKF methods. We discuss the advantages
and disadvantages of each method. Furthermore, each method is exemplified by
numerical examples.

11. Essential background III

The non-linear Kalman Filter chapter requires prior knowledge of the following
topics:

• Derivatives - required for mastering Extended Kalman Filter
• Matrix square root - required for mastering Unscented Kalman Filter

The author assumes that the readers are familiar with derivatives from an introductory
Calculus course. Thus, this chapter deals with a matrix square root.

11.1 The square root of a matrix
A matrix B is a square root of a matrix A if:

A = BB (11.1)

The equation above can have several possible solutions, and there are different
computation methods for finding the square root of a matrix.

The Uncentenced Kalman Filter employs an Unscented Transform that requires a
square root computation of a covariance matrix.

Luckily, covariance matrices are positive and semi-definite. Thus we can use
Cholesky decomposition (or Cholesky factorization) for the computation
of a covariance matrix square root.

11.2 Cholesky decomposition
The Cholesky decomposition is a decomposition of a positive definite matrix into a
product of a lower triangular matrix and its transpose.

If a matrix A is positive definite:

A = LTL (11.2)

The lower triangular matrix is a square matrix where all the values above the diagonal

224 Chapter 11. Essential background III

are zero:
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44



l11 l12 l13 l14

0 l22 l23 l24

0 0 l33 l34

0 0 0 l44

 (11.3)

If matrix A is positive semi-definite, then the diagonal entries of L are allowed to be
zero.

Cholesky decomposition algorithm:

• Diagonal elements of L:

lvv =

√
avv −

∑
u<v

l2vu (11.4)

• Off-diagonal elements of L:

ltv =
1

lvv

(
atv −

∑
u<v

ltulvu

)
(11.5)

First, find the elements of the first row of L, then find the elements of the second
row of L, and then find the elements of the third row of L. Continue the process
until you reach the final row.

Example:

A =


9 −6 3 24

−6 20 −22 −4

3 −22 30 −9

24 −4 −9 99


Given the matrix A, find the square root of A using Cholesky decomposition.

l11 =
√
a11 = 3

l21 =
a21
l11

=
−6

3
= −2

l22 =
√
a22 − l211 =

√
20− (−2)2 = 4

l31 =
a31
l11

=
3

3
= 1

11.2 Cholesky decomposition 225

l32 =
a32 − l31 × l21

l22
=

−22− 1× (−2)

4
= −5

l33 =
√

a33 − l231 − l232 =
√

30− 12 − (−5)2 = 2

l41 =
a41
l11

=
24

3
= 8

l42 =
a42 − l41 × l21

l22
=

−4− 8× (−2)

4
= 3

l43 =
a43 − l41 × l31 − l42 × l32

l33
=

−9− 8× 1− 3× (−5)

2
= −1

l44 =
√

a44 − l241 − l242 − l243 =
√
99− 82 − 32 − (−1)2 = 5

L =


3 0 0 0

−2 4 0 0

1 −5 2 0

8 3 −1 5


Some computer packages have built-in Cholesky decomposition functions.

Python example:

1 import numpy as np
2

3 A = np.array ([[9, -6, 3, 24], [-6, 20, -22, -4], [3, -22, 30, -9],
[24, -4, -9, 99]])

4

5 print(A)
6 [[9 -6 3 24]
7 [-6 20 -22 -4]
8 [3 -22 30 -9]
9 [24 -4 -9 99]]

10

11 L = np.linalg.cholesky(A)
12

13 print(L)
14 [[3. 0. 0. 0.]
15 [-2. 4. 0. 0.]
16 [1. -5. 2. 0.]
17 [8. 3. -1. 5.]]

226 Chapter 11. Essential background III

MATLAB example:

1 A = [9 -6 3 24; -6 20 -22 -4; 3 -22 30 -9; 24 -4 -9 99]
2

3 A =
4

5 9 -6 3 24
6 -6 20 -22 -4
7 3 -22 30 -9
8 24 -4 -9 99
9

10 L = chol(A)
11

12 L =
13

14 3 -2 1 8
15 0 4 -5 3
16 0 0 2 -1
17 0 0 0 5

MATLAB provided LT .

12. Non-linearity problem

Before diving into the problem solution, we must understand the problem itself.
What are the non-linear systems, and why does the standard Linear Kalman Filter
fail with non-linear systems?

We distinguish between two types of non-linearities:

• State-to-measurement non-linear relation
• Non-linear system dynamics

We will treat each type of non-linearity separately and then combine them.

First, let us start with an example of the linear system.

12.1 Example – linear system
Assume an air balloon that can move only upwards or downwards with constant
acceleration dynamics. We are interested in estimating the balloon altitude.

The balloon system dynamic model is linear.

We can describe the balloon system dynamics as follows:

x̂n+1,n = F x̂n,n (12.1)

x̂n+1,n

ˆ̇xn+1,n

ˆ̈xn+1,n

 =

1 ∆t 0.5∆t2

0 1 ∆t

0 0 1


x̂n,n

ˆ̇xn,n

ˆ̈xn,n

 (12.2)

Where:

x is the balloon altitude
ẋ is the balloon velocity
ẍ is the balloon acceleration
∆t is the time interval

We are already familiar with linear motion system dynamics from Part II.

The balloon altitude is measured by the radar located beneath the balloon.

228 Chapter 12. Non-linearity problem

Figure 12.1: Balloon altitude measurement using radar.

The radar measurement error distribution is Gaussian.

The radar sends an electromagnetic pulse toward the balloon. The pulse is reflected
from the balloon and received by the radar. The radar measures the time elapsed
between pulse transmission and pulse reception. Since the pulse travels with the
speed of light, we can easily calculate the target range (which is the balloon altitude):

x = t
c

2
(12.3)

Where:

x is the balloon altitude
c is the speed of light

Let us construct the observation matrix H .

zn = Hxn (12.4)

Where:

12.1 Example – linear system 229

xn is the balloon altitude
zn is the measured time delay

H =
[
2
c

]
(12.5)

The dependency between the measured value (elapsed time) and the estimated value
(balloon altitude) is linear. However, what happens to the estimation uncertainty?
Is it still Gaussian?

The following chart depicts the dependency between the elapsed time and the balloon
altitude. We can also see the distribution of measurement error (uncertainty) on the
bottom plot and the state estimation error (uncertainty) on the left plot.

Figure 12.2: Linear System.

Since the dependency is between the measured value and the estimated value is
linear. The estimated value uncertainty is also Gaussian!

230 Chapter 12. Non-linearity problem

12.2 Example – State-to-measurement non-linear relation
This example presents the first type of non-linearity: state-to-measurement relation.
Let us see what happens to the estimated value uncertainty when the state-to-
measurement relation is non-linear.

Like in the previous example, we are interested in measuring the balloon altitude.
The balloon system dynamic model is linear and similar to the previous example.
The balloon altitude is measured by the optical sensor that is located aside. The
distance d between the sensor and the balloon nadir is known. The optical sensor
can also measure the target angle. The sensor measurement error distribution is
Gaussian.

R Nadir is the direction pointing directly below a particular location.

Figure 12.3: Balloon altitude measurement using optical sensor.

The balloon altitude can be calculated by using a trigonometric function:

x = d · tan(θ) (12.6)

Where:

xn is the balloon altitude
d is the distance between the sensor and the balloon nadir
θ is the balloons elevation angle

The tangent function is non-linear. We can’t construct the observation matrix H !

12.2 Example – State-to-measurement non-linear relation 231

For a linear system, the measurement equation for the linear system is given by:

zn = Hxn + vn (12.7)

Where:

zn is the measurement vector
xn is the true system state (the hidden state)
vn is a random noise vector
H is the observation matrix

For the system with non-linear state-to-measurement relation, the observation matrix
H is a function of x. Therefore, the measurement equation looks like:

zn = h(xn,vn) (12.8)

In this example:

θ = tan−1x

d
(12.9)

Let us see what happens to the estimated value uncertainty distribution.

Figure 12.4: Non-linear System.

232 Chapter 12. Non-linearity problem

Figure 12.4 depicts the dependency between the measured angle and the balloon
altitude. We can also see the distribution of measurement error (uncertainty) on the
bottom plot and the state estimation error (uncertainty) on the left plot.

The altitude uncertainty distribution is not Gaussian! It also changes its shape at
different measurement points.

The Kalman Filter algorithm assumes that the distribution of all random variables
is Gaussian. For non-linear systems, this assumption does not hold anymore. The
algorithm is not stable and yields significant estimation errors.

12.3 Example – Non-linear system dynamics
This example presents the second type of non-linearity: non-linear system dynamics.

Assume an ideal gravity pendulum that consists of a body with mass m hung by a
string with length L from fixed support - the pendulum swings back and forth at a
constant amplitude.

We want to estimate the angle θ from the vertical to the pendulum.

The angle units are radians.

Figure 12.5: Pendulum.

12.3 Example – Non-linear system dynamics 233

First, we need to describe the pendulum motion.

According to Newton’s second law, the sum of forces on the object equals:

F = ma (12.10)

Where:

m is the body mass
a is acceleration

The force that is applied to the pendulum equals:

F = −mg sin (θ) = ma (12.11)

The acceleration equals:

a = −g sin (θ) (12.12)

The arc length s that corresponds to angle θ is:

s = Lθ (12.13)

Remember that θ units are radians. For degrees units: s = Lθ
π

180

The pendulum velocity equals:

v =
ds

dt
= L

dθ

dt
(12.14)

The pendulum acceleration equals:

a =
d2s

dt2
= L

d2θ

dt2
= −g sin (θ) (12.15)

Thus, the differential equation that describes the pendulum movement is:

L
d2θ

dt2
= −g sin (θ) (12.16)

It is the second-order homogeneous differential equation.

Once we’ve derived the motion equation, we can define the dynamic model.

234 Chapter 12. Non-linearity problem

The state vector of the pendulum is in the form of the following:

xn =

[
θn

θ̇n

]
(12.17)

Where:
θn is the pendulum angle at time n

θ̇n is the pendulum angular velocity at time n

θ̂n+1,n = θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn+1,n = ˆ̇θn,n +
ˆ̈θn,n∆t = ˆ̇θn,n −

g

L
sin(θ̂n,n)∆t

(12.18)

The dynamic model is not linear. For a linear system, the general form of the state
extrapolation equation in a matrix notation is:

x̂n+1,n = F x̂n,n +Gun +wn (12.19)

Where:
x̂n+1,n is a predicted system state vector at time step n+ 1

x̂n,n is an estimated system state vector at time step n

un is a control variable or input variable - a measurable (deterministic)
input to the system

wn is a process noise or disturbance - an unmeasurable input that affects
the state

F is a state transition matrix
G is a control matrix or input transition matrix (mapping control to state

variables)

For the non-linear system dynamics, the state transition matrix F is a function of x
and u. Therefore, the state extrapolation equation looks like:

x̂n+1,n = f(x̂n,n,un,wn) (12.20)

In this example:

f(x̂n+1,n) =

 θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn,n −
g

L
sin(θ̂n,n)∆t

 (12.21)

The measurement equation depends on the measured parameter.

12.3 Example – Non-linear system dynamics 235

Let us review two cases:

Case 1 - measured parameter is pendulum angle θ

In this case, the measurement equation looks like:

θn,measured =
[
1 0

] [θn
θ̇n

]
(12.22)

The above equation is in the form of: zn = Hxn. Therefore, the state-to-measurement
relation (the first type of non-linearity) is linear.

Case 2 - measured parameter is the pendulum x - position

In this case, the measurement equation looks like:

θn,measured = Lsin(θn) (12.23)

The above equation is in the form of: zn = h(xn). Therefore, the state-to-
measurement relation is non-linear.

Now we are ready to discuss different linearization methods.

13. Extended Kalman Filter (EKF)

The Extended Kalman Filter has emerged from National Aeronautics and Space
Administration (NASA) Dynamic Analysis Branch research, led by Dr. Schmidt [5],
[6].

The main idea behind the EKF is a linearization of the dynamic model at the working
point.

This chapter includes a detailed explanation of the concept and two numerical
examples.

13.1 Analytic linearization
The EKF performs analytic linearization of the model at each point in time. The
following figure exemplifies a one-dimensional case. We want to find a tangent line
for a point x = x0. Using the tangent line, we can project the uncertainty to the y
axis and keep its’ shape Gaussian.

Figure 13.1: Analytic Linearization.

From basic calculus, we know that the slope of the tangent line to the function f(x)

238 Chapter 13. Extended Kalman Filter (EKF)

at the point x0 equals to the derivative of the function f(x) at the point x0:

m =
df(x)

dx

∣∣∣∣
x= x0

(13.1)

Where m is the slope of the tangent line.

The general straight-line equation is:

y = mx+ b (13.2)

Where:

m is the slope of the line
b is a y-axis intercept point

We can find the line equation given the slope m and any point x0, y0 :

y − y0 = m(x− x0) (13.3)

Expand and rearrange:

y = mx−mx0 + y0 (13.4)

b = −mx0 + y0 (13.5)

We can find y0 using the original function f(x):

y0 = f(x0) (13.6)

So the tangent line equation would be:

y = mx−mx0 + y0 = y0 + (x− x0)m (13.7)

y = f(x0) + (x− x0)
df(x)

dx

∣∣∣∣
x=x0

(13.8)

13.2 First-order Taylor series expansion 239

13.2 First-order Taylor series expansion
In many Kalman Filter books, the process of analytic linearization is also called:
“The approximation of f(x) by a first-order Taylor series expansion about the point
x = x0”.

According to Taylor’s theorem, the function f(x) equals an infinite sum of terms
that are expressed in terms of the function derivatives at a single point x = x0:

f(x) ≈ f(x0)+f
′
(x0)(x−x0)+

f
′′
(x0)

2!
(x−x0)

2+
f

′′′
(x0)

3!
(x−x0)

3+· · ·+f (k)(x0)

k!
(x−x0)

k+· · ·

(13.9)

We can approximate the function f(x) by calculating the first k terms of the Taylor
Series. For high approximation precision, we shall select a high k value.

Taylor’s series is named after Brook Taylor, who introduced it in 1715.

For the linear approximation, we should keep only the first two terms of the Taylor
Series:

f(x) ≈ f(x0) + f
′
(x0)(x− x0) (13.10)

This equation is identical to Equation 13.8, which we derived in the previous chapter.

13.3 Uncertainty projection in one dimension
The EKF projects the uncertainty using the linearization technique.

As we will see soon, when projecting the uncertainty, there is no need to evaluate
the observation function h(x) and the state transition function f(x). We only need

to evaluate derivatives
dh(x)

dx
,
df(x)

dx
.

After finding the tangent line equation at the point x0, we can project the uncertainty
using the tangent line.

The line equation is:

y = mx+ b (13.11)

Where:

240 Chapter 13. Extended Kalman Filter (EKF)

m =
df(x)

dx

∣∣∣∣∣
x= x0

b = −mx0 + y0

The standard deviation (sigma) points are: (x0 + σx, x0 − σx).

y − σy = m(x0 − σx) + b

y + σy = m(x0 + σx) + b
(13.12)

The measurement uncertainty is the difference between the sigma points:

(y + σy)− (y − σy) = m(x0 + σx) + b− (m(x0 − σx) + b) (13.13)

σy = mσx (13.14)

σy =

(
df(x)

dx

)
σx (13.15)

The estimation variance: px = σ2
x

py =

(
df(x)

dx

)2

px (13.16)

13.3.1 Example – linearization in a single dimension
Let us return to the balloon altitude measurement example (section 12.2) with a
state-to-measurement non-linear relation.

The balloon altitude is measured by the optical sensor that is located aside. The
distance d between the sensor and the nadir of the balloon is known. The optical
sensor can measure the target angle θ.

Since the system state-to-measurement relation is not linear, the measurement
equation has the following form:

zn = h(xn) (13.17)

13.3 Uncertainty projection in one dimension 241

In this example:

zn = θ = tan−1xn

d
(13.18)

h(xn) = θ = tan−1xn

d
(13.19)

To propagate the measurement uncertainty from the angle domain to the altitude
domain, we need to perform an analytic linearization, or in other words, differentiate
h(xn).

dh(x)

dx
=

d
(
tan−1 x

d

)
dx

(13.20)

We should calculate the derivative of tan−1
x

d
. One can use computer software

packages to calculate the derivative. I prefer to calculate derivatives myself, but
checking yourself with a software package could be a good idea.

The derivative of the arctan is given by:

d

dx
tan−1(x) =

1

1 + x2
(13.21)

Using chain rule:

d
(
tan−1 x

d

)
dx

=
1

1 +
(
x
d

)2 · 1
d
=

d

d2 + x2
(13.22)

The linearized observation matrix for this example is:

dh(x)

dx
=
[

d
d2+x2

]
(13.23)

We can check the differentiation using the Python SymPy library or MATLAB
symbolic toolbox.

Python example:

1 import sympy as sp # import SymPy library
2

3 x, d = sp.symbols(’x, d’) # define symbols
4

5 f = sp.atan(x/d) # define function
6 dif = sp.diff(f, x) # differentiate function
7

8 print(dif) # print the result

242 Chapter 13. Extended Kalman Filter (EKF)

The Result:

1 1/(d*(1 + x**2/d**2))

MATLAB example:

1 syms f(x) d; % define symbols
2 f(x) = atan(x/d); % define function
3 dif = diff(f,x); % differentiate function
4

5 disp(dif); % print the result

The Result:

1 1/(d*(x^2/d^2 + 1))

The following figure depicts the analytic linearization result for the “measuring
balloon altitude” example.

Figure 13.2: Linearization .

The orange line is the tangent line to the function x = d · tanθ at the point θ = 850.

13.4 Uncertainty projection in two dimensions 243

13.4 Uncertainty projection in two dimensions
In two dimensions, the uncertainty is projected through a tangent plane. The
following figure describes a tangent plane of the non-linear function f(x, y) at a point
x0, y0.

Figure 13.3: The tangent plane.

The tangent plane is characterized by two orthogonal slopes – the x - axis slope and
the y - axis slope. The partial derivatives of f(x, y) at a point x0, y0 are the slopes
of the tangent plane:

∂f(x, y)

∂x
,
∂f(x, y)

∂y
(13.24)

As we’ve seen in the previous section, when projecting the uncertainty, there is no
need to evaluate the observation function h(x) and the state transition function
f(x). We only need to evaluate derivatives. In two dimensions, we should find two
partial derivatives.

Let us recall the pendulum example (section 12.3). The state vector of the pendulum
is in the form of the following:

xn =

[
θn

θ̇n

]
(13.25)

Where:

244 Chapter 13. Extended Kalman Filter (EKF)

θn is the pendulum angle at time n

θ̇n is the pendulum angular velocity at time n

We measure the pendulum position: L · sin(θn).

Since the state-to-measurement relation (the first type of non-linearity) is non-linear,
the measurement equation is a type of:

zn = h(xn) (13.26)

h(xn) = L · sin(θn) (13.27)

The multivariate analytical linearization is given by:

Pout =
∂h

∂x
Pin

(
∂h

∂x

)T

(13.28)

We need to find the partial derivatives of h(x):

∂h

∂x
=

[
∂ (Lsin(θn))

∂θ

∂ (Lsin(θn))

∂θ̇

]
=
[
Lcos(θn) 0

]
(13.29)

Pout =
∂h

∂x
Pin

(
∂h

∂x

)T

= (Lcos(θn))
2Pin (13.30)

The dynamic model of the pendulum is also non-linear (the second type of non-
linearity). It has the form of:

x̂n+1,n = f(x̂n,n) (13.31)

x̂n+1,n =

[
θ̂n+1,n

ˆ̇θn+1,n

]
=

 θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn,n −
g

L
sin(θ̂n,n)∆t

 (13.32)

f(x̂n,n) =

[
f1(x̂n,n)

f2(x̂n,n)

]
=

 θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn,n −
g

L
sin(θ̂n,n)∆t

 (13.33)

13.5 Multivariate uncertainty projection 245

The dynamic model function f(x̂n,n) is a matrix that contains two different sub-
functions. We should find partial derivatives for each sub-function.

∂f(x)
∂x

=


∂f1

∂θ̂

∂f1

∂ ˆ̇θ

∂f2

∂θ̂

∂f2

∂ ˆ̇θ

 =



∂
(
θ̂n,n +

ˆ̇θn,n∆t
)

∂θ̂

∂
(
θ̂n,n +

ˆ̇θn,n∆t
)

∂ ˆ̇θ

∂

(
ˆ̇θn,n −

g

L
sin(θ̂n,n)∆t

)
∂θ̂

∂

(
ˆ̇θn,n −

g

L
sin(θ̂n,n)∆t

)
∂ ˆ̇θ



=


1 ∆t

−
g

L
cos(θ̂n,n)∆t 1


(13.34)

The multivariate analytical linearization is given by:

Pout =
∂f

∂x
Pin

(
∂f

∂x

)T

(13.35)

13.5 Multivariate uncertainty projection
We can generalize the two-dimensional case by extending it to an N - dimensional
case.

For multi-dimensional problems, we propagate the multivariate Gaussian random
variable (represented by covariance matrix) using a linear approximation of the
multi-dimensional function.

For the non-linear system dynamics, the multivariate analytical linearization is given
by:

Pout =
∂f

∂x
Pin

(
∂f

∂x

)T

(13.36)

Where:

Pin is an input covariance
Pout is a projected covariance
∂f

∂x
is a state transition matrix Jacobian

Jacobian matrix is a matrix of partial derivatives, named after Karl Gustav Jacob

246 Chapter 13. Extended Kalman Filter (EKF)

Jacobi, a German mathematician.

∂f

∂x
=


∂f1

∂x1

· · ·
∂f1

∂xn...
∂fm

∂x1

· · ·
∂fm

∂xn

 (13.37)

Similarly, for the state-to-measurement non-linear relation, the multivariate analytical
linearization is given by:

Pout =
∂h

∂x
Pin

(
∂h

∂x

)T

(13.38)

Where:

Pin is an input covariance
Pout is a projected covariance
∂h

∂x
is an observation matrix Jacobian

For additional material on error propagation, I recommend reading [7].

13.5.1 Jacobian derivation example
Let us complicate the “Vehicle location estimation example” (section 9.1). We
estimated the vehicle location in the XY plane in that example. The vehicle had an
onboard location sensor that reported x and y coordinates of the system.

Now, we want to track the vehicle using radar. The radar is located at the plane
origin, and it measures the vehicle range (r) and bearing angle (φ).

The radar measurement error distribution is Gaussian.

13.5 Multivariate uncertainty projection 247

Figure 13.4: Vehicle location estimation using radar.

The measurement vector zn is:

zn =

[
rn

φn

]
(13.39)

The state vector xn is:

xn =

[
xn

yn

]
(13.40)

Let us find the relation between the measurement vector and the state vector.

The vehicle range (r) can be expressed by x and y using the Pythagorean theorem:

r =
√

x2 + y2 (13.41)

The vehicle bearing angle (φ) can be expressed by x and y using a trigonometrical
function:

φ = tan−1 y

x
(13.42)

Since the state-to-measurement relation is non-linear, the measurement equation is a
type of zn = h(xn):

248 Chapter 13. Extended Kalman Filter (EKF)

[
r

φ

]
=


√
x2 + y2

tan−1
y

x

 (13.43)

Jacobian derivation:

∂h

∂x
=


∂h1

∂x1

· · ·
∂h1

∂xn...
∂hm

∂x1

· · ·
∂hm

∂xn

 =



∂
(√

x2 + y2
)

∂x
· · ·

∂
(√

x2 + y2
)

∂y
...

∂

(
tan−1

y

x

)
∂x

· · ·
∂

(
tan−1

y

x

)
∂y


(13.44)

For this example, the Jacobian is a square 4 elements matrix of partial derivatives.
Let us calculate each element separately.

∂
(√

x2 + y2
)

∂x
=

(
1

2

(
x2 + y2

)− 1
2

)
2x =

x√
x2 + y2

(13.45)

∂
(√

x2 + y2
)

∂y
=

(
1

2

(
x2 + y2

)− 1
2

)
2y =

y√
x2 + y2

(13.46)

∂

(
tan−1

y

x

)
∂x

=

(
1

1 +
(
y
x

)2
)(

− y

x2

)
= − y

x2 + y2
(13.47)

∂
(
tan−1 y

x

)
∂y

=

(
1

1 +
(
y
x

)2
)(

1

x

)
=

x

x2 + y2
(13.48)

∂h(x)

∂x
=


x√

x2+y2

y√
x2 + y2

−
y

x2 + y2
x

x2 + y2

 (13.49)

13.6 EKF equations 249

We also can derive Jacobian using computer software packages.

Python example:

1 import sympy as sp # import SymPy library
2

3 x, y = sp.symbols(’x, y’) # define symbols
4

5 H = sp.Matrix ([sp.sqrt(x**2 + y**2), sp.atan(y/x)]) # define H
matrix

6 J = H.jacobian ([x,y]) # calculate Jacobian
7

8 print(J) # print the result

The Result:

1 Matrix ([[x/sqrt(x**2 + y**2), y/sqrt(x**2 + y**2)],
2 [-y/(x**2*(1 + y**2/x**2)), 1/(x*(1 + y**2/x**2))]])

MATLAB example:

1 syms x y z % define symbols
2 H = [sqrt(x^2 + y^2) atan(y/x)]; % define H matrix
3 J = jacobian(H); % calculate Jacobian
4

5 disp(J); % print the result

The Result:

1 [x/(x^2 + y^2) ^(1/2) , y/(x^2 + y^2) ^(1/2)]
2 [-y/(x^2*(y^2/x^2 + 1)), 1/(x*(y^2/x^2 + 1))]

13.6 EKF equations
The concept of the EKF is similar to the LKF (Linear Kalman Filter); however,
some modifications should be made. The modifications are related to the observation
matrix H and the state transition matrix F .

13.6.1 The EKF observation matrix
If the state-to-measurement relation (the first type of non-linearity) of the system is
non-linear, the observation matrix is of the type:

H = h(xn) (13.50)

250 Chapter 13. Extended Kalman Filter (EKF)

The State Update Equation looks like the following:

x̂n,n = x̂n,n−1 +Kn (zn − h(x̂n,n−1)) (13.51)

For the uncertainty propagation, the observation matrix H should be linearized to
keep the uncertainty PDF Gaussian.

The Covariance Update Equation looks like the following:

Pn,n =

(
I −Kn

∂h

∂x

)
Pn,n−1

(
I −Kn

∂h

∂x

)T

+KnRnK
T
n (13.52)

The Kalman Gain Equation looks like the following:

Kn = Pn,n−1
∂h

∂x

T (∂h

∂x
Pn,n−1

∂h

∂x

T

+Rn

)−1

(13.53)

13.6.2 The EKF state transition matrix
If the dynamic model (the second type of non-linearity) of the system is non-linear,
the observation matrix is of the type:

F = f(xn) (13.54)

For the uncertainty propagation, the state transition matrix F should be linearized
to keep the uncertainty PDF Gaussian. The State Extrapolation Equation looks like
the following:

x̂n+1,n = f(x̂n,n) +Gun (13.55)

The Covariance Extrapolation Equation looks like the following:

Pn+1,n =
∂f

∂x
Pn,n

∂f

∂x

T

+Q (13.56)

13.6.3 EKF equations summary
The following table compares Extended Kalman Filter equations to the Linear
Kalman Filter equations.

13.6 EKF equations 251

Equation LKF Equation EKF Equation

Predict

State
Extrapolation

x̂n+1,n = F x̂n,n +Gun x̂n+1,n = f(x̂n,n) +Gun

Covariance
Extrapolation

Pn+1,n = FPn,nF
T +Q Pn+1,n =

∂f

∂x
Pn,n

(
∂f

∂x

)T

+Q

Update

State Update
x̂n,n = x̂n,n−1

+Kn (zn −Hx̂n,n−1)

x̂n,n = x̂n,n−1

+Kn (zn − h(x̂n,n−1))

Covariance
Update

Pn,n = (I −KnH)Pn,n−1

× (I −KnH)T +KnRnK
T
n

Pn,n =

(
I −Kn

∂h

∂x

)
Pn,n−1

×

(
I −Kn

∂h

∂x

)T

+KnRnK
T
n

Kalman Gain
Kn = Pn,n−1H

T

×
(
HPn,n−1H

T +Rn

)−1

Kn = Pn,n−1

(
∂h

∂x

)T

×

∂h

∂x
Pn,n−1

(
∂h

∂x

)T

+Rn

−1

Table 13.1: Kalman Filter equations.

Once we understand the concept, we can proceed to numerical examples.

252 Chapter 13. Extended Kalman Filter (EKF)

13.7 Example 11 – vehicle location estimation using radar
I introduced this example earlier (subsection 13.5.1) when I explained the multivariate
uncertainty projection concept.

We want to track the vehicle using radar. The radar is located at the plane origin,
and it measures the vehicle range (r) and the bearing angle (φ).

The radar measurement error distribution is Gaussian. We assume constant accelera-
tion dynamics.

Figure 13.5: Vehicle location estimation using radar.

13.7.1 Kalman Filter equations

The state extrapolation equation
Similarly to example 9 (section 9.1), the state extrapolation equation is:

x̂n+1,n = F x̂n,n (13.57)

The system state xn is defined by:

xn =



xn

ẋn

ẍn

yn

ẏn

ÿn


(13.58)

13.7 Example 11 – vehicle location estimation using radar 253

The extrapolated vehicle state for time n+ 1 can be described as follows:

x̂n+1,n

ˆ̇xn+1,n

ˆ̈xn+1,n

ŷn+1,n

ˆ̇yn+1,n

ˆ̈yn+1,n


=



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1





x̂n,n

ˆ̇xn,n

ˆ̈xn,n

ŷn,n
ˆ̇yn,n
ˆ̈yn,n


(13.59)

The dynamic model of the system (the second type of non-linearity) in this example

is linear! There is no need to calculate the Jacobian
∂f

∂x
.

The covariance extrapolation equation
The Covariance Extrapolation Equation is similar to example 9 (section 9.1):

Pn+1,n = FPn,nF
T +Q (13.60)

The estimate covariance is:

P =



px pxẋ pxẍ 0 0 0

pẋx pẋ pẋẍ 0 0 0

pẍx pẍẋ pẍ 0 0 0

0 0 0 py pyẏ pyÿ

0 0 0 pẏy pẏ pẏÿ

0 0 0 pÿy pÿẏ pÿ


(13.61)

The elements on the main diagonal of the matrix are the variances of the estimation:
• px is the variance of the X coordinate position estimation
• pẋ is the variance of the X coordinate velocity estimation
• pẍ is the variance of the X coordinate acceleration estimation
• py is the variance of the Y coordinate position estimation
• pẏ is the variance of the Y coordinate velocity estimation
• pÿ is the variance of the Y coordinate acceleration estimation
• The off-diagonal entries are covariances

254 Chapter 13. Extended Kalman Filter (EKF)

The process noise matrix
The process noise matrix is also similar to example 9 (section 9.1):

Q =



σ2
x σ2

xẋ σ2
xẍ 0 0 0

σ2
ẋx σ2

ẋ σ2
ẋẍ 0 0 0

σ2
ẍx σ2

ẍẋ σ2
ẍ 0 0 0

0 0 0 σ2
y σ2

yẏ σ2
yÿ

0 0 0 σ2
ẏy σ2

ẏ σ2
ẏÿ

0 0 0 σ2
ÿy σ2

ÿẏ σ2
ÿ



=



∆t4

4

∆t3

2

∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0
∆t4

4

∆t3

2

∆t2

2

0 0 0
∆t3

2
∆t2 ∆t

0 0 0
∆t2

2
∆t 1



σ2
a

(13.62)

Where:

• ∆t is the time between successive measurements
• σ2

a is a random variance in acceleration

The measurement equation
The measurement equation is different from example 9.

The measurement vector zn is:

zn =

[
rn

φn

]
(13.63)

13.7 Example 11 – vehicle location estimation using radar 255

The system state vector xn is defined by:

xn =



xn

ẋn

ẍn

yn

ẏn

ÿn


(13.64)

Let us find the relation between the measurement vector and the state vector. The
vehicle range (r) can be expressed by x and y using the Pythagorean theorem:

r =
√

x2 + y2 (13.65)

The vehicle bearing angle (φ) can be expressed by x and y using a trigonometrical
function:

φ = tan−1 y

x
(13.66)

Since the state-to-measurement relation (the first type of non-linearity) is non-linear,
the measurement equation is a type of zn = h(xn):

[
r

φ

]
=


√

x2 + y2

tan−1
y

x

 (13.67)

Jacobian derivation:

∂h

∂x
=


∂h1

∂x1
· · ·

∂h1

∂xn
...

. . .
...

∂hm

∂x1
· · ·

∂hm

∂xn



=



∂
(√

x2 + y2
)

∂x

∂
(√

x2 + y2
)

∂ẋ

∂
(√

x2 + y2
)

∂ẍ

∂
(√

x2 + y2
)

∂y

∂
(√

x2 + y2
)

∂ẏ

∂
(√

x2 + y2
)

∂ÿ

∂

(
tan−1

y

x

)
∂x

∂

(
tan−1

y

x

)
∂ẋ

∂

(
tan−1

y

x

)
∂ẍ

∂

(
tan−1

y

x

)
∂y

∂

(
tan−1

y

x

)
∂ẏ

∂

(
tan−1

y

x

)
∂ÿ


(13.68)

256 Chapter 13. Extended Kalman Filter (EKF)

I derived the partial derivatives earlier when I explained the multivariate uncertainty
projection concept (subsection 13.5.1).

∂h

∂x
=


x√

x2 + y2
0 0

y√
x2 + y2

0 0

− y

x2 + y2
0 0

x

x2 + y2
0 0

 (13.69)

The measurement uncertainty
The measurement covariance matrix is:

Rn =

[
σ2
rm 0

0 σ2
φm

]
(13.70)

The Kalman Gain
The Kalman Gain in for EKF is given by:

Kn = Pn,n−1
∂h

∂x

T (∂h

∂x
Pn,n−1

∂h

∂x

T

+Rn

)−1

(13.71)

Where:

Kn is the Kalman Gain
Pn,n−1 is a prior estimate covariance matrix of the current state (predicted at the

previous state)
∂h

∂x
is the linearized Observation Function

Rn is the measurement noise covariance matrix

The state update equation
The State Update Equation is given by:

x̂n,n = x̂n,n−1 +Kn (zn − h(x̂n,n−1)) (13.72)

Where:

x̂n,n is the estimated system state vector at time step n

x̂n,n−1 is the predicted system state vector at time step n− 1

Kn is the Kalman Gain
h(x̂n,n−1) is the Observation Function

13.7 Example 11 – vehicle location estimation using radar 257

The covariance update equation
The Covariance Update Equation in a matrix form is given by:

Pn,n =

(
I −Kn

∂h

∂x

)
Pn,n−1

(
I −Kn

∂h

∂x

)T

+KnRnK
T
n (13.73)

Where:

Pn,n is the estimate covariance matrix of the current state
Pn,n−1 is the prior estimate covariance matrix of the current state (predicted at the

previous state)
Kn is the Kalman Gain
∂h

∂x
is the linearized Observation Function

Rn is the measurement noise covariance matrix

13.7.2 The numerical example
The vehicle trajectory is similar to example 9 (section 9.1). The vehicle moves
straight in the Y direction with a constant velocity. After traveling 400 meters, the
vehicle turns left with a turning radius of 300 meters. During the turning maneuver,
the vehicle experiences acceleration due to the circular motion (angular acceleration).

Figure 13.6: Vehicle trajectory.

258 Chapter 13. Extended Kalman Filter (EKF)

• The measurements period: ∆t = 1s

• The random acceleration standard deviation: σa = 0.2m
s2

• The range measurement error standard deviation: σrm = 5m

• The bearing angle measurement error standard deviation: σφm = 0.0087rad

• The state transition matrix F is:

F =



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1


=



1 1 0.5 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0.5

0 0 0 0 1 1

0 0 0 0 0 1


• The process noise matrix Q is:

Q =



∆t4

4
∆t3

2
∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0 ∆t4

4
∆t3

2
∆t2

2

0 0 0 ∆t3

2
∆t2 ∆t

0 0 0 ∆t2

2
∆t 1


σ2
a =



1
4

1
2

1
2

0 0 0
1
2

1 1 0 0 0
1
2

1 1 0 0 0

0 0 0 1
4

1
2

1
2

0 0 0 1
2

1 1

0 0 0 1
2

1 1


0.22

• The measurement variance R is:

Rn =

[
σ2
rm 0

0 σ2
φm

]
=

[
52 0

0 0.00872

]

The following table contains the set of 35 noisy measurements:

13.7 Example 11 – vehicle location estimation using radar 259

1 2 3 4 5 6 7 8

r(m) 502.55 477.34 457.21 442.94 427.27 406.05 400.73 377.32

φ(rad) -0.9316 -0.8977 -0.8512 -0.8114 -0.7853 -0.7392 -0.7052 -0.6478

9 10 11 12 13 14 15 16 17

360.27 345.93 333.34 328.07 315.48 301.41 302.87 304.25 294.46

-0.59 -0.5183 -0.4698 -0.3952 -0.3026 -0.2445 -0.1626 -0.0937 0.0085

18 19 20 21 22 23 24 25 26

294.29 299.38 299.37 300.68 304.1 301.96 300.3 301.9 296.7

0.0856 0.1675 0.2467 0.329 0.4149 0.504 0.5934 0.667 0.7537

27 28 29 30 31 32 33 34 35

297.07 295.29 296.31 300.62 292.3 298.11 298.07 298.92 298.04

0.8354 0.9195 1.0039 1.0923 1.1546 1.2564 1.3274 1.409 1.5011

Table 13.2: Example 11 measurements.

13.7.2.1 Iteration Zero

Initialization

We don’t know the vehicle location, so we approximate the initial position at about
100m from the true vehicle position (x̂0,0 = 400m, ŷ0,0 = −300m)

x̂0,0 =



400

0

0

−300

0

0


Since our initial state vector is a guess, we set a very high estimate uncertainty. The
high estimate uncertainty results in a high Kalman Gain by giving a high weight to
the measurement.

260 Chapter 13. Extended Kalman Filter (EKF)

P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


Prediction

x̂1,0 = F x̂0,0 =



400

0

0

−300

0

0



P1,0 = FP0,0F
T +Q =



1125 750 250 0 0 0

750 1000 500 0 0 0

250 500 500 0 0 0

0 0 0 1125 750 250

0 0 0 750 1000 500

0 0 0 250 500 500


13.7.2.2 First Iteration

Step 1 - Measure

The measurement values:

z1 =

[
502.55

−0.9316

]

Step 2 - Update

Observation matrix (h(x̂1,0)) calculation.

h(x̂1,0) =


√

x2
1,0 + y21,0

tan−1
y1,0

x1,0

 =


√

4002 + (−300)2

tan−1
− 300

400

 =

[
500

0.644

]

Observation matrix Jacobian

(
∂h(x̂1,0)

∂x

)
calculation:

13.7 Example 11 – vehicle location estimation using radar 261

∂h(x̂1,0)

∂x
=


x1,0√

x2
1,0 + y21,0

0 0
y1,0√

x2
1,0 + y21,0

0 0

− y1,0

x2
1,0 + y21,0

0 0
x1,0

x2
1,0 + y21,0

0 0



=

[
0.8 0 0 −0.6 0 0

0.0012 0 0 0.0016 0 0

]

The Kalman Gain calculation:

K1 = P1,0

(
∂h(x̂1,0)

∂x

)T
∂h(x̂1,0)

∂x
P1,0

(
∂h(x̂1,0)

∂x

)T

+R

−1

=



0.783 295

0.522 196.7

0.174 65.6

−0.587 393.3

−0.391 262.2

−0.13 87.4


Estimate the current state:

x̂1,1 = x̂1,0 +K1 (z1 − h(x̂1,0)) =



317

−55.3

−18.4

−414.8

−76.5

−25.5


Update the current estimate covariance:

P1,1 =

(
I −K1

∂h(x̂1,0)

∂x

)
P1,0

(
I −K1

∂h(x̂1,0)

∂x

)T

+K1RKT
1

=



22.39 14.93 4.98 −2.75 −1.84 −0.61

14.93 509.97 336.67 −1.84 −1.22 −0.41

4.98 336.67 445.58 −0.61 −0.41 −0.14

−2.75 −1.84 −0.61 22.39 14.93 4.98

−1.84 −1.22 −0.41 14.93 509.97 336.67

−0.61 −0.41 −0.14 4.98 336.67 445.58



262 Chapter 13. Extended Kalman Filter (EKF)

Step 3 - Predict

x̂2,1 = F x̂1,1 =



252.42

−73.8

−18.45

−504.13

−102.06

−25.52



P2,1 = FP1,1F
T +Q =



1015.28 1257.7 564.46 −8.7 −4.35 −1.09

1257.7 1628.94 782.3 −4.35 −2.18 −0.54

564.46 782.3 445.62 −1.09 −0.54 −0.14

−8.7 −4.35 −1.09 1010.2 1255.16 563.83

−4.35 −2.18 −0.54 1255.16 1627.67 781.98

−1.09 −0.54 −0.14 563.83 781.98 445.54


13.7.2.3 Second Iteration

Step 1 - Measure

The measurement values:

z2 =

[
477.34

−0.8977

]

Step 2 - Update

Observation matrix (h(x̂2,1)) calculation.

h(x̂2,1) =


√

x2
2,1 + y22,1

tan−1
y2,1

x2,1

 =


√

252.422 + (−504.13)2

tan−1
− 504.13

252.42

 =

[
563.8

−1.1

]

Observation matrix Jacobian

(
∂h(x̂2,1)

∂x

)
calculation:

∂h(x̂2,1)

∂x
=


x2,1√

x2
2,1 + y22,1

0 0
y2,1√

x2
2,1 + y22,1

0 0

− y2,1

x2
2,1 + y22,1

0 0
x2,1

x2
2,1 + y22,1

0 0

 =

 0.45 0 0 −0.89 0 0

0.0016 0 0 0.0008 0 0



The Kalman Gain calculation:

13.7 Example 11 – vehicle location estimation using radar 263

K2 = P2,1

(
∂h(x̂2,1)

∂x

)T
∂h(x̂2,1)

∂x
P2,1

(
∂h(x̂2,1)

∂x

)T

+R

−1

=



0.44 492.34

0.54 611.49

0.24 274.65

−0.87 246.4

−1.08 309.3

−0.49 139.36



Estimate the current state:

x̂2,2 = x̂2,1 +K2 (z2 − h(x̂2,1)) =



317.47

7.6

18.19

−377.14

56.13

45.6



Update the current estimate covariance:

P2,2 =

(
I −K2

∂h(x̂2,1)

∂x

)
P2,1

(
I −K2

∂h(x̂2,1)

∂x

)T

+K2RKT
2

=



23.8 29.48 13.23 −0.31 −0.23 −0.08

29.48 107.4 99.42 −0.23 −4.87 −2.8

13.23 99.42 139.14 −0.08 −2.8 −1.62

−0.31 −0.23 −0.08 24.24 30.12 13.53

−0.23 −4.87 −2.8 30.12 105.54 98.22

−0.08 −2.8 −1.62 13.53 98.22 138.39


Step 3 - Predict

x̂3,2 = F x̂2,2 =



334.17

25.8

18.19

−298.21

101.73

45.6



264 Chapter 13. Extended Kalman Filter (EKF)

P3,2 = FP2,2F
T +Q =



337.6 368.83 182.2 −8.92 −10.19 −3.69

368.83 445.42 238.6 −10.19 −12.09 −4.42

182.2 238.6 139.18 −3.69 −4.42 −1.62

−8.92 −10.19 −3.69 336.39 365.74 180.97

−10.19 −12.09 −4.42 365.74 440.41 236.65

−3.69 −4.42 −1.62 180.97 236.65 138.43



At this point, I think it would be reasonable to jump to the last Kalman Filter
iteration.

13.7.2.4 Thirty-Fifth Iteration

Step 1 - Measure

The measurement values:

z35 =

[
298.04

1.5011

]

Step 2 - Update

Observation matrix (h(x̂35,34)) calculation.

h(x̂35,34) =


√

x2
35,34 + y235,34

tan−1
y35,34

x35,34

 =


√

307.82 + (−277.04)2

tan−1
− 277.04

307.8

 =

[
300.07

1.5

]

Observation matrix Jacobian

(
∂h(x̂35,34)

∂x

)
calculation:

(
∂h(x̂35,34)

∂x

)
=


x35,34√

x2
35,34 + y235,34

0 0
y35,34√

x2
35,34 + y235,34

0 0

− y35,34

x2
35,34 + y235,34

0 0
x35,34

x2
35,34 + y235,34

0 0



=

 0.07 0 0 0.998 0 0

−0.003 0 0 0.0002 0 0



The Kalman Gain calculation:

13.7 Example 11 – vehicle location estimation using radar 265

K35 = P35,34

(
∂h(x̂35,34)

∂x

)T
∂h(x̂35,34)

∂x
P35,34

(
∂h(x̂35,34)

∂x

)T

+R

−1

=



0.04 −174.67

0.01 −73.57

0 −15.06

0.5 −4.83

0.16 −1.32

0.03 −0.3


Estimate the current state:

x̂35,35 = x̂35,34 +K35 (z35 − h(x̂35,34)) =



20.87

−25.93

−0.84

298.38

2.55

−1.8


Update the current estimate covariance:

P35,35 =

(
I −K35

∂h(x̂35,34)

∂x

)
P35,34

(
I −K35

∂h(x̂35,34)

∂x

)T

+K35RKT
35

=



4.07 1.7 0.34 0.95 0.31 0.04

1.7 1.3 0.38 0.16 0.2 0.04

0.34 0.38 0.16 −0.01 0.03 0.01

0.95 0.16 −0.01 12.02 4.05 0.7

0.31 0.2 0.03 4.05 2.29 0.56

0.04 0.04 0.01 0.7 0.56 0.19


Step 3 - Predict

x̂36,35 = F x̂35,35 =



−5.49

−26.77

−0.84

300.02

0.74

−1.8



P36,35 = FP35,35F
T +Q =



9.53 4 0.82 1.68 0.61 0.09

4 2.25 0.57 0.41 0.27 0.05

0.82 0.57 0.2 0.02 0.04 0.01

1.68 0.41 0.02 23.74 8 1.38

0.61 0.27 0.04 8 3.63 0.79

0.09 0.05 0.01 1.38 0.79 0.23



266 Chapter 13. Extended Kalman Filter (EKF)

13.7.3 Example summary
The following chart demonstrates the EKF location and velocity estimation perfor-
mance.

The chart on the left compares the true, measured, and estimated values of the
vehicle position. Two charts on the right compare the true, measured, and estimated
values of x - axis velocity and y - axis velocity.

Figure 13.7: Example 11: true value, measured values and estimates.

We can see a satisfying performance of the EKF. Although the filter is roughly
initiated at about 100 meters from the true position with zero initial velocity, it
provides a good position estimation after taking two measurements and a good
velocity estimation after taking four measurements.

Let us take a closer look at the vehicle position estimation performance. The following
chart describes the true, measured, and estimated values of the vehicle position
compared to the 95% confidence ellipses. We can see that the ellipses’ size constantly
decreases. That means that the EKF converges with time.

The following charts provide a zoom into the linear part of the vehicle motion and
the turning maneuver part.

13.7 Example 11 – vehicle location estimation using radar 267

Figure 13.8: Example 11: true value, measured values and estimates - zoom.

We can see that at the linear part of the vehicle motion, the EKF copes with the
noisy measurements and follows the true vehicle position. On the other hand, during
the vehicle turning maneuver, the EKF estimates are quite away from the true vehicle
position, although they are within the 90% confidence ellipse bounds.

268 Chapter 13. Extended Kalman Filter (EKF)

13.8 Example 12 - estimating the pendulum angle
In this example, we estimate the pendulum angle θ. The dynamic model of the
pendulum was derived earlier (section 12.3) in this chapter. Assume an ideal gravity
pendulum that consists of a body with mass m hung by a string with length L from
fixed support - the pendulum swings back and forth at a constant amplitude. We
want to estimate the angle θ from the vertical to the pendulum. The angle units are
radians.

We measure the pendulum position z = Lsin(θn).

Figure 13.9: Pendulum position measurement.

13.8 Example 12 - estimating the pendulum angle 269

13.8.1 Kalman Filter equations

The state extrapolation equation
The state vector of the pendulum is in the form of the following:

xn =

[
θn

θ̇n

]
(13.74)

Where:

• θn is the pendulum angle at time n

• θ̇n is the pendulum angular velocity at time n

As we’ve seen earlier, the dynamic model of the pendulum is non-linear (the second
type of non-linearity). It has the form of:

x̂n+1,n = f(x̂n,n) (13.75)

x̂n+1,n =

[
θ̂n+1,n

ˆ̇θn+1,n

]
=

 θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn,n −
g

L
sin(θ̂n,n)∆t

 (13.76)

f(x̂n,n) =

 θ̂n,n +
ˆ̇θn,n∆t

ˆ̇θn,n −
g

L
sin(θ̂n,n)∆t

 (13.77)

270 Chapter 13. Extended Kalman Filter (EKF)

Jacobian derivation
We have already derived (section 12.3) the Jacobian for pendulum dynamic model:

∂f(x)

∂x
=


∂f1

∂θ̂

∂f1

∂ ˆ̇θ

∂f2

∂θ̂

∂f2

∂ ˆ̇θ

 =



∂
(
θ̂n,n +

ˆ̇θn,n∆t
)

∂θ̂

∂
(
θ̂n,n +

ˆ̇θn,n∆t
)

∂ ˆ̇θ

∂

(
ˆ̇θn,n −

g

L
sin(θ̂n,n)∆t

)
∂θ̂

∂

(
ˆ̇θn,n −

g

L
sin(θ̂n,n)∆t

)
∂ ˆ̇θ



=


1 ∆t

−
g

L
cos(θ̂n,n)∆t 1


(13.78)

The covariance extrapolation equation
The Covariance Extrapolation Equation is given by:

Pn+1,n =
∂f(x̂n,n)

∂x
Pn,n

∂f(x̂n,n)

∂x

T

+Q (13.79)

Where:

Pn,n is the estimate covariance matrix of the current state
Pn+1,n is the predicted estimate covariance matrix for the next state
∂f(x̂n,n)

∂x
is the linearized State Transition Matrix

Q is the process noise matrix

The estimate covariance is:

P =

[
px pxẋ

pẋx pẋ

]
(13.80)

The elements of the main diagonal of the matrix are the variances of the estimation:

• px is the variance of the angle θ estimation
• pẋ is the variance of the angular velocity θ̇ estimation

13.8 Example 12 - estimating the pendulum angle 271

The process noise matrix

Q =

[
σ2
x σ2

xẋ

σ2
ẋx σ2

ẋ

]
=


∆t4

4

∆t3

2

∆t3

2
∆t2

σ2
a (13.81)

Where:

• ∆t is the time between successive measurements
• σ2

a is a random variance in acceleration

The measurement equation
We measure the pendulum position: Lsin (θn).

Since the state-to-measurement relation (the first type of non-linearity) is non-linear,
the measurement equation is a type of:

zn = h (xn) (13.82)

h (xn) = Lsin (θn) (13.83)

Jacobian derivation
We have already derived (section 12.3) the Jacobian for pendulum position measure-
ment:

∂h

∂x
=

[
∂ (Lsin(θn))

∂θ

∂ (Lsin(θn))

∂θ̇

]
=
[
Lcos(θn) 0

]
(13.84)

The measurement uncertainty
The measurement variance is:

Rn =
[
σ2
xm

]
= r (13.85)

272 Chapter 13. Extended Kalman Filter (EKF)

The Kalman Gain
The Kalman Gain in for EKF is given by:

Kn = Pn,n−1
∂h

∂x

T (∂h

∂x
Pn,n−1

∂h

∂x

T

+Rn

)−1

(13.86)

Where:

Kn is the Kalman Gain
Pn,n−1 is a prior estimate covariance matrix of the current state (predicted at the

previous state)
∂h

∂x
is the linearized Observation Matrix

Rn is the measurement noise covariance matrix

The state update equation
The State Update Equation is given by:

x̂n,n = x̂n,n−1 +Kn (zn − h(x̂n,n−1)) (13.87)

Where:

x̂n,n is the estimated system state vector at time step n

x̂n,n−1 is the predicted system state vector at time step n− 1

Kn is the Kalman Gain
h(x̂n,n−1) is the linearized Observation Matrix

13.8 Example 12 - estimating the pendulum angle 273

The covariance update equation
The Covariance Update Equation in a matrix form is given by:

Pn,n =

(
I −Kn

∂h

∂x

)
Pn,n−1

(
I −Kn

∂h

∂x

)T

+KnRnK
T
n (13.88)

Where:
Pn,n is the estimate covariance matrix of the current state
Pn,n−1 is the prior estimate covariance matrix of the current state (predicted at the

previous state)
Kn is the Kalman Gain
h(x̂n,n−1) is the linearized Observation Matrix
Rn is the measurement noise covariance matrix

13.8.2 The numerical example
The example parameters:

• The Pendulum string length: L = 0.5m

• Gravitational acceleration constant: g = 9.8m
s2

• Measurement Uncertainty (standard deviation): σxm = 0.01m

• Process Noise Uncertainty (angular acceleration standard deviation): σa = 1 rad
s2

The following chart depicts the true angle and angular velocity vs. time (including
the process noise).

Figure 13.10: Pendulum true position and velocity.

If you are curious about pendulum motion simulation, you can find mathematical

274 Chapter 13. Extended Kalman Filter (EKF)

derivations in Appendix E.

The process noise matrix Q is:

Q =

[
σ2
x σ2

xẋ

σ2
ẋx σ2

ẋ

]
=


∆t4

4

∆t3

2

∆t3

2
∆t2

σ2
a (13.89)

The measurement variance R is:

Rn = σ2
xm

= 0.012 (13.90)

The following table contains the set of the first 10 noisy measurements:

1 2 3 4 5 6 7 8 9 10

Lsin(θ) 0.119 0.113 0.12 0.101 0.099 0.063 0.008 -0.017 -0.037 -0.05

Table 13.3: Example 12 measurements.

13.8.2.1 Iteration Zero

Initialization

We don’t know the pendulum angle, so our initial angle approximation includes an
error. We set the initial velocity to 0.

x̂0,0 =

[
0.0873

0

]

Since our initial state vector is a guess, we set a high estimate uncertainty. The high
estimate uncertainty results in a high Kalman Gain by giving high weight to the
measurement.

P0,0 =

[
5 0

0 5

]

Prediction

In order to predict x̂1,0 we need to find find the x̂1,0 = f(x̂0,0):

x̂1,0 = f(x̂0,0) =

 θ̂0,0 +
ˆ̇θ0,0∆t

ˆ̇θ0,0 −
g

L
sin(θ̂0,0)∆t

 =

 0.0873 + 0 · 0.05

0−
9.8

0.5
sin(0.0873) · 0.05

 =

[
0.08735

−0.0854

]

13.8 Example 12 - estimating the pendulum angle 275

Jacobian
∂f(x̂0,0)

∂x
calculation:

∂f(x̂0,0)

∂x
=

 1 ∆t

−
g

L
cos(θ̂n,n)∆t 1

 =

 1 0.05

−
9.8

0.5
cos(0.0873) · 0.05 1

 =

[
1 0.05

−0.9763 1

]

Uncertainty propagation:

P1,0 =
∂f(x̂0,0)

∂x
P0,0

(
∂f(x̂0,0)

∂x

)T

+Q =

[
5.013 −4.631

−4.631 9.768

]

13.8.2.2 First Iteration

Step 1 - Measure

The measurement values:

z1 = 0.119

Step 2 - Update

Observation matrix (h(x̂1,0)) calculation.

h(x̂1,0) = Lsin(θ1,0) = 0.5sin(0.0873) = 0.0436

Observation matrix Jacobian

(
∂h(x̂1,0)

∂x

)
calculation:

∂h(x̂1,0)

∂x
=
[
Lcos(θ1,0) 0

]
=
[
0.5cos(0.0873) 0

]
=
[
0.4981 0

]
The Kalman Gain calculation:

K1 = P1,0

(
∂h(x̂1,0)

∂x

)T
∂h(x̂1,0)

∂x
P1,0

(
∂h(x̂1,0)

∂x

)T

+R

−1

=

[
2.0075

−1.8548

]

Estimate the current state:

x̂1,1 = x̂1,0 +K1 (z1 − h(x̂1,0)) =

[
0.2395

−0.2261

]

Update the current estimate covariance:

P1,1 =

(
I −K1

∂h(x̂1,0)

∂x

)
P1,0

(
I −K1

∂h(x̂1,0)

∂x

)T

+K1RKT
1 =

[
0.0004 −0.00037

−0.00037 5.489

]

276 Chapter 13. Extended Kalman Filter (EKF)

Step 3 – Predict

x̂2,1 = f(x̂1,1) =

 θ̂1,1 +
ˆ̇θ1,1∆t

ˆ̇θ1,1 −
g

L
sin(θ̂1,1)∆t

 =

 0.2395 + (−0.2261) · 0.05

−0.2261−
9.8

0.5
sin(0.2395) · 0.05


=

[
0.2282

−0.4586

]

Jacobian
∂f(x̂1,1)

∂x
calculation:

∂f(x̂1,1)

∂x
=


1 ∆t

−
g

L
cos(θ̂1,1)∆t 1

 =

 1 0.05

−
9.8

0.5
cos(0.2395) · 0.05 1

 =

 1 0.05

−0.952 1


Uncertainty propagation:

P2,1 =
∂f(x̂1,1)

∂x
P1,1

(
∂f(x̂1,1)

∂x

)T

+Q =

[
0.0141 0.274

0.2737 5.49

]

13.8.2.3 Second Iteration

Step 1 - Measure

The measurement values:

z2 = 0.113

Step 2 - Update

Observation matrix (h(x̂2,1)) calculation.

h(x̂2,1) = Lsin(θ2,1) = 0.5sin(0.2282) = 0.1131

Observation matrix Jacobian

(
∂h(x̂2,1)

∂x

)
calculation:

∂h(x̂2,1)

∂x
=
[
Lcos(θ2,1) 0

]
=
[
0.5cos(0.2282) 0

]
=
[
0.487 0

]
The Kalman Gain calculation:

K2 = P2,1

(
∂h(x̂2,1)

∂x

)T
∂h(x̂2,1)

∂x
P2,1

(
∂h(x̂2,1)

∂x

)T

+R

−1

=

[
1.99

38.74

]

Estimate the current state:

13.8 Example 12 - estimating the pendulum angle 277

x̂2,2 = x̂2,1 +K2 (z2 − h(x̂2,1)) =

[
0.228

−0.463

]

Update the current estimate covariance:

P2,2 =

(
I −K2

∂h(x̂2,1)

∂x

)
P2,1

(
I −K2

∂h(x̂2,1)

∂x

)T

+K2RKT
2 =

[
0.0004 0.008

0.008 0.328

]

Step 3 – Predict

x̂3,2 = f(x̂2,2) =


θ̂2,2 +

ˆ̇θ2,2∆t

ˆ̇θ2,2 −
g

L
sin(θ̂2,2)∆t

 =


0.228 + (−0.463) · 0.05

−0.463−
9.8

0.5
sin(0.228) · 0.05


=

[
0.205

−0.684

]

Jacobian
∂f(x̂2,2)

∂x
calculation:

∂f(x̂2,2)

∂x
=

 1 ∆t

−
g

L
cos(θ̂2,2)∆t 1

 =

 1 0.05

−
9.8

0.5
cos(0.463) · 0.05 1

 =

[
1 0.05

−0.955 1

]

Uncertainty propagation:

P3,2 =
∂f(x̂2,2)

∂x
P2,2

(
∂f(x̂2,2)

∂x

)T

+Q =

[
0.002 0.0236

0.0236 0.315

]

At this point, I think it would be reasonable to jump to the tenth Kalman Filter
iteration.

13.8.2.4 Tenth Iteration

Step 1 - Measure

The measurement values:

z10 = −0.05

Step 2 - Update

Observation matrix (h(x̂10,9)) calculation.

h(x̂10,9) = Lsin(θ10,9) = −0.075

278 Chapter 13. Extended Kalman Filter (EKF)

Observation matrix Jacobian

(
∂h(x̂10,9)

∂x

)
calculation:

∂h(x̂10,9)

∂x
=
[
Lcos(θ10,9) 0

]
=
[
0.494 0

]
The Kalman Gain calculation:

K10 = P10,9

(
∂h(x̂10,9)

∂x

)T
∂h(x̂10,9)

∂x
P10,9

(
∂h(x̂10,9)

∂x

)T

+R

−1

=

[
0.768

3.04

]

Estimate the current state:

x̂10,10 = x̂10,9 +K10 (z10 − h(x̂10,9)) =

[
−0.132

−1.186

]

Update the current estimate covariance:

P10,10 =

(
I −K10

∂h(x̂10,9)

∂x

)
P2,1

(
I −K10

∂h(x̂10,9)

∂x

)T

+K10RKT
10

=

[
0.155 0.616

0.616 9.58

]
× 103

Step 3 – Predict

x̂11,10 = f(x̂10,10) =

 θ̂10,10 +
ˆ̇θ10,10∆t

ˆ̇θ2,2 −
g

L
sin(θ̂10,10)∆t

 =

[
−0.191

−1.057

]

Jacobian
∂f(x̂10,10)

∂x
calculation:

∂f(x̂10,10)

∂x
=

 1 ∆t

−
g

L
cos(θ̂10,10)∆t 1

 =

[
1 0.05

−0.972 1

]

Uncertainty propagation:

P11,10 =
∂f(x̂10,10)

∂x
P10,10

∂f(x̂10,10)

∂x
T +Q =

[
0.243 0.976

0.976 11.04
× 103

]

13.8 Example 12 - estimating the pendulum angle 279

13.8.3 Example summary
The following chart compares the true, measured, and estimated pendulum angles
for 50 measurements. (The measured angle is derived from the measured distance

θn = sin−1

(
z

L

)
). The chart also includes the 95% confidence interval.

Figure 13.11: Example 12: pendulum angle - true value, measured values and estimates.

The next chart compares the true and estimated pendulum angular velocity.

Figure 13.12: Example 12: pendulum anglular velocity - true value, measured values and
estimates.

280 Chapter 13. Extended Kalman Filter (EKF)

13.9 Limitations of EKF
EKF performs well for many practical problems when f (x) or h (x) are close to
linear. However, it fails in highly non-linear regions.

The EKF concept is based on the linearization of the model. The EKF estimation
includes the linearization error. The linearization error depends on the non-
linearity degree of the function compared to the propagated uncertainty, as shown in
the following figure.

Figure 13.13: Linearization Error.

13.9.1 Linearization error - 2D example
Let us see the effect of the linearization error on polar to cartesian transformation.
Assume a normally distributed random variable in polar coordinates. We want to
estimate the random variable parameters in cartesian coordinates. A distance vector
r and an angle θ describe any value in the polar coordinates. In cartesian coordinates,
the values are described by x and y coordinates. The dependency between r, θ, and
x, y is non-linear:

x = r · cos(θ)

y = r · sin(θ)
(13.91)

13.9 Limitations of EKF 281

Figure 13.14: 2D example.

The random variable parameters (r, θ) in polar coordinates are: µ =

[
1

π

2

]
, σ =[

0.05 0.5
]

.

We generate 1000 random points (samples) with normal distribution in polar co-
ordinates. Each sample represents a possible variable value in polar coordinates.
Then we transform all the samples from polar to cartesian coordinates. The random
variable distribution in polar coordinates is normal.

The plot on the left describes the random samples of the random variable in polar
coordinates. The right plot describes the random samples of the random variable in
cartesian coordinates after the transformation.

The ellipses on the plots represent the covariance of the random variable.

Figure 13.15: EKF linearized covariance.

282 Chapter 13. Extended Kalman Filter (EKF)

We can see a significant difference between actual and EKF linearized covariance.
The EKF linearized covariance includes a high linearization error.

The EKF yields a wrong estimation. The EKF estimation uncertainty is also relatively
low (the error ellipse is relatively narrow). The EKF is overconfident in a wrong
estimation!

A common alternative to the Extended Kalman Filter is the Unscented Kalman
Filter.

The following plot compares EKF and UKF linearized covariance for our example.

Figure 13.16: EKF vs. UKF linearized covariance.

We can see that the UKF linearized covariance is much closer to the actual covariance
than the EKF linearized covariance.

14. Unscented Kalman Filter (UKF)

As we’ve seen in the previous chapter, when the State Transition model f(x) and
Observation model h(x) are close to linear, the EKF performance is satisfying.
However, when f(x) or h(x) models are highly non-linear, the linearization error
can cause estimations that are significantly different from the true value of the state
and estimation uncertainties that don’t capture the true uncertainties in the state.

The Unscented Kalman Filter is an alternative approach to linearization. While
Extended Kalman Filter treats the non-linearity using analytical linearization, the Un-
scented Kalman Filter performs Unscented Transform (UT) - statistical linearization
based on a set of rules.

Jeffrey Uhlmann initially proposed the unscented transform (UT) as a component of
his PhD thesis [18]; however, it is predominantly known from [8].

What is the meaning of the name “unscented”?

A running joke was made that “unscented” is a contrast to “scented,” meaning the
EKF performance is “stinky.”

UKF creator Jeffrey Uhlmann explained that “unscented” was an arbitrary name he
adopted to avoid being referred to as the “Uhlmann Filter.”

“Initially, I only referred to it as the ”new filter.“ Needing a more specific name,
people in my lab began referring to it as the ”Uhlmann filter,“ which obviously isn’t
a name that I could use, so I had to come up with an official term. One evening
everyone else in the lab was at the Royal Opera House, and as I was working, I
noticed someone’s deodorant on a desk. The word ”unscented“ caught my eye as the
perfect technical term.”

Jeffrey Uhlmann also says:

“What was most striking to people about the UT was not the accuracy so much as
the ease with which it could be implemented. There was no longer a need to derive a
linearized approximation which would then have to be coded up for use in the filter.”

284 Chapter 14. Unscented Kalman Filter (UKF)

14.1 The Unscented Transform (UT)
The Unscented Transform is a method for calculating the statistics of a random
variable that undergoes a non-linear transformation [8].

The Unscented Transform includes three steps:

• Step 1 - Select a set of points from the input distribution. The points are
selected according to a specific, deterministic algorithm.

• Step 2 - Propagate each selected point through the non-linear function, pro-
ducing a new set of points belonging to the output distribution.

• Step 3 - Compute sigma points weights.
• Step 4 - Approximate the sample mean and covariance of the output distribution

using the propagated set of points and carefully chosen weights.

14.1.1 Step 1 – sigma points selection
The set of sigma points includes the mean and a certain number of points located at
a certain distance away from the mean.

14.1.1.1 Number of selected points

The number of selected points depends on the input distribution. The N – dimensional
random variable is approximated by 2N+1 points. For a one-dimensional distribution
(N = 1), the number of points is 3. For a two-dimensional distribution (N = 2), the
number of points is 5.

14.1.1.2 Selected points location

The first point is the mean of the input distribution:

X (0)
n,n = x̂n,n (14.1)

The superscript in parentheses of X (0)
n,n is a sigma point number.

Reminder: In “Kalman Filter language,” the mean of the input distribution is the
current estimate x̂n,n, and the uncertainty of the input distribution represented
by the covariance matrix of the current estimate Pn,n. The main diagonal of the
covariance matrix includes variances for each dimension (σxx, σyy).

The other points are located at a certain statistical distance from the mean. The
statistical distance is a distance measure for probability distributions. In other words,
the statistical distance is expressed in terms of standard deviation or sigma (σ). For
this reason, the selected points are called the Sigma Points, and the Unscentenced

14.1 The Unscented Transform (UT) 285

Transform is sometimes called the Sigma point transform.

The other sigma points location is:

X (i)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
i
, i = 1, · · · , N

X (i)
n,n = x̂n,n −

(√
(N + κ)Pn,n

)
i−N

, i = N + 1, · · · , 2N
(14.2)

Where:

N is the number of dimensions

κ (the Greek letter kappa) is a tuning parameter(√
(N + κ)Pn,n

)
is the ith row or column of the matrix square root of√

(N + κ)Pn,n

For Gaussian distribution, the rule of thumb is to set: N + κ = 3.

The sigma points should be chosen so that they capture the most important statistical
properties of the prior random variable x̂ [9].

It is time for some numerical examples.

14.1.1.3 Example: one-dimensional random variable

Assume a zero-mean normally distributed one-dimensional random variable with a
standard deviation of 2: x̂n,n = 0,pn,n = 2

• The number of dimensions: N = 1

• The number of sigma points: 2N + 1 = 3

• Set: N + κ = 3

• The first point is the mean of the input distribution: X (0)
n,n = 0

• The second point: X (1)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
1
= 0 +

(√
3 · 22

)
= 3.46

• The third point: X (2)
n,n = x̂n,n −

(√
(N + κ)Pn,n

)
2
= 0−

(√
3 · 22

)
= −3.46

• The following figure describes the random variable PDF with sigma points (red
circles)

286 Chapter 14. Unscented Kalman Filter (UKF)

Figure 14.1: 1D RV Sigma Points.

The Unscented Transform sigma points are not necessarily on the standard deviation
boundaries.

14.1.1.4 Example: two-dimensional random variable

Let us continue the polar to cartesian transformation example from section 13.9.

x̂n,n =

1π
2

 =

[
1

1.57

]

Pn,n =

[
0.052 0

0 0.52

]
=

[
0.0025 0

0 0.25

]

Finding the sigma points:

• The number of dimensions: N = 2

• The number of sigma points: 2N + 1 = 5

• Set: N + κ = 3

• The first point is the mean of the input distribution: X (0)
n,n =

[
1

1.57

]
• In order to find the other points, we should compute:

√
(N + κ)Pn,n

14.1 The Unscented Transform (UT) 287

√
(N + κ)Pn,n =

√√√√3

[
0.0025 0

0 0.25

]
=

√√√√[0.0075 0

0 0.75

]

We need to find the square root of the matrix. Luckily, the covariance matrix is
positive and semi-definite; therefore, we can use Cholesky decomposition (section 11.2)
to find the square root.

(N + κ)Pn,n = LLT

L is a lower triangular matrix:

L =

[
l11 0

l21 l22

]

l11 =
√
p11 =

√
0.0075 = 0.0866

l21 =
p21
l11

=
0

0.0866
= 0

l22 =
√

p22 − l221 =
√
0.75− 02 = 0.866

L =

[
0.0866 0

0 0.866

]

We can compute it faster with computer software packages:

Python example:

1 import numpy as np
2 P = np.array ([[0.0075 , 0], [0, 0.75]])
3 print(P)
4 [[0.0075 0.]
5 [0. 0.75]]
6

7 L = np.linalg.cholesky(P)
8 print(L)
9 [[0.08660254 0.]

10 [0. 0.8660254]]

288 Chapter 14. Unscented Kalman Filter (UKF)

MATLAB example:

1 P = [0.0075 0; 0 0.75]
2 P =
3 0.0075 0
4 0 0.7500
5 L = chol(P)’
6 L =
7 0.0866 0
8 0 0.8660

• The second point: X (1)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
1
=

[
1

1.57

]
+

[
0.0866

0

]
=[

1.0866

1.57

]

• The third point: X (1)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
1
=

[
1

1.57

]
+

[
0

0.866

]
=[

1

2.436

]

• The fourth point: X (1)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
1
=

[
1

1.57

]
−

[
0.0866

0

]
=[

0.9134

1.57

]

• The fifth point: X (1)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
1
=

[
1

1.57

]
−

[
0

0.866

]
=[

1

0.704

]

The following figure describes the covariance ellipse of the random variable PDF
with sigma points (red circles).

14.1 The Unscented Transform (UT) 289

Figure 14.2: 2D RV Sigma Points.

The Unscented Transform sigma points are not necessarily on the covariance ellipse
boundaries.

14.1.2 Step 2 – points propagation
Propagate each selected point through the non-linear function, producing a new set
of points belonging to the output distribution.

14.1.2.1 Example: one-dimensional random variable - continued

The non-linear function is:

f(x) = sin(2x)sin(0.3x) + 2x

Xn+1,n = f (Xn,n)

The propagated (or transformed) sigma points:

X (0)
n+1,n = sin(2 · 0)sin(0.3 · 0) + 2 · 0 = 0

X (1)
n+1,n = sin(2 · 3.46)sin(0.3 · 3.46) + 2 · 3.46 = 7.45

X (1)
n+1,n = sin(2 · (−3.46))sin(0.3 · (−3.46)) + 2 · (−3.46) = −6.41

290 Chapter 14. Unscented Kalman Filter (UKF)

Figure 14.3: 1D RV Sigma Points propagation.

The green line on the left plot is the PDF of the input random variable. The red
circles on the left plot are the sigma points (Xn,n) of the input random variable.

The green line on the right plot is the PDF of the input random variable after the
non-linear transformation. The red circles on the right plot are the sigma points
after the non-linear transformation (Xn+1,n).

14.1.2.2 Example: two-dimensional random variable - continued

The non-linear function is:[
x

y

]
=

[
r · cos(θ)
r · sin(θ)

]

Xn+1,n = f (Xn,n)

The propagated (or transformed) sigma points:

X (0)
n+1,n = f

(
X (0)

n,n

)
=

[
1 · cos(π

2
)

1 · sin(π
2
)

]
=

[
0

1

]

X (1)
n+1,n = f

(
X (1)

n,n

)
=

[
1.0866 · cos(π

2
)

1.0866 · sin(π
2
)

]
=

[
0

1.0866

]

X (2)
n+1,n = f

(
X (2)

n,n

)
=

[
1 · cos(2.436)
1 · sin(2.436)

]
=

[
−0.762

0.648

]

X (3)
n+1,n = f

(
X (3)

n,n

)
=

[
0.9134 · cos(π

2
)

0.9134 · sin(π
2
)

]
=

[
0

0.913

]

X (2)
n+1,n = f

(
X (2)

n,n

)
=

[
1 · cos(0.704)
1 · sin(0.704)

]
=

[
0.762

0.648

]

14.1 The Unscented Transform (UT) 291

Figure 14.4: 2D RV Sigma Points propagation.

The green shape on the left plot is the covariance ellipse of the input random variable.
The red circles on the left plot are the sigma points (Xn,n) of the input random
variable.

The green shape on the right plot is the covariance ellipse of the input random
variable after the non-linear transformation. The red circles on the right plot are the
sigma points after the non-linear transformation (Xn+1,n).

14.1.3 Step 3 – compute sigma points weights
We should compute two weights:

• w0 - weight of the first sigma point
(
X (0)

n,n

)
• w1 - weight of the other sigma points

(
X (i)

n,n

)
, i > 0

w0 = κ/(N + κ)

wi = 1/2(N + κ), i > 0
(14.3)

14.1.4 Step 4 - approximate the mean and covariance of the output
distribution
In this step, we approximate the sample mean and covariance of the output distribu-
tion using the propagated set of points and carefully chosen weights.

The mean of the output distribution:

x̂n+1,n =
2N∑
i=0

wiX (i)
n+1,n (14.4)

292 Chapter 14. Unscented Kalman Filter (UKF)

The covariance of the output is also computed with weights:

Pn+1,n =
2N∑
i=0

wi

(
X (i)

n+1,n − x̂n+1,n

)(
X (i)

n+1,n − x̂n+1,n

)T
(14.5)

Let us complete our examples.

14.1.4.1 Example: one-dimensional random variable - continued

Weights computation:

• The number of dimensions: N = 1

• N + κ = 3

• κ = 2

w0 = κ/ (N + κ) = 2/3

wi = 1/2 (N + κ) = 1/(2 · 3) = 1/6

Mean computation:

x̂n+1,n =
2N∑
i=0

wiX (i)
n+1,n = 2/3 · 0 + 1/6 · 7.45 + 1/6 · (−6.42) = 0.17

Covariance computation (in the one-dimensional case, it is variance):

Pn+1,n =
2N∑
i=0

wi

(
X (i)

n+1,n − x̂n+1,n

)(
X (i)

n+1,n − x̂n+1,n

)T
= 2/3 · (0− 0.17)2 + 1/6 · (7.45− 0.17)2 + 1/6 · (−6.42− 0.17)2 = 16.06

The following plot depicts the output random variable after the Unscented Transform.

Figure 14.5: 1D RV Unscented Transform.

14.1 The Unscented Transform (UT) 293

The green line is the PDF of the input random variable after non-linear transformation.
The red circles are the sigma points after the non-linear transformation

(
X (i)

n+1,n

)
.

The blue line is the PDF of the output random variable after the Unscented Transform.

14.1.4.2 Example: two-dimensional random variable - continued

Weights computation:

• The number of dimensions: N = 2

• N + κ = 3

• κ = 1

w0 = κ/ (N + κ) = 1/3

wi = 1/2 (N + κ) = 1/(2 · 3) = 1/6

Mean computation:

x̂n+1,n =
2N∑
i=0

wiX (i)
n+1,n = 1/3

[
0

1

]
+ 1/6

[
0

1.0866

]
+ 1/6

[
−0.762

0.648

]

+1/6

[
0

0.913

]
+ 1/6

[
0.762

0.648

]
=

[
0

0.8826

]

Covariance computation:

Pn+1,n =

2N∑
i=0

wi

(
X (i)
n+1,n − x̂n+1,n

)(
X (i)
n+1,n − x̂n+1,n

)T

= 1/3

([
0
1

]
−
[

0
0.8826

])([
0
1

]
−
[

0
0.8826

])T

+1/6

([
0

1.0866

]
−
[

0
0.8826

])([
0

1.0866

]
−
[

0
0.8826

])T

+1/6

([
−0.762
0.648

]
−
[

0
0.8826

])([
−0.762
0.648

]
−
[

0
0.8826

])T

+1/6

([
0

0.913

]
−
[

0
0.8826

])([
0

0.913

]
−
[

0
0.8826

])T

+1/6

([
0.762
0.648

]
−
[

0
0.8826

])([
0.762
0.648

]
−
[

0
0.8826

])T

=

[
0.193 0
0 0.03

]

We can compute the mean and covariance more elegantly:

294 Chapter 14. Unscented Kalman Filter (UKF)

• Define a matrix (container) of transformed sigma points:
Xn+1,n =

[
X (0)

n+1,n X (1)
n+1,n · · · X (2N)

n+1,n

]
• Define a vector of weights:
w =

[
w0 w1 · · ·w2N

]
• Mean computation:
x̂n+1,n = Xn+1,nw

x̂n+1,n =

[
0 0 −0.762 0 0.762

1 1.0866 0.648 0.913 0.648

]

1/3

1/6

1/6

1/6

1/6

 =

[
0

0.8826

]

• Covariance computation:
Pn+1,n = (Xn+1,n − x̂n+1,n) · diag(w) · (Xn+1,n − x̂n+1,n)

T

(Xn+1,n − x̂n+1,n) =

[
0 0 −0.762 0 0.762

1 1.0866 0.648 0.913 0.648

]
−

[
0

0.8826

]

=

[
0 0 −0.762 0 0.762

0.117 0.204 −0.235 0.03 −0.235

]

Pn+1,n =

[
0 0 −0.762 0 0.762

0.117 0.204 −0.235 0.03 −0.235

]

1/3 0 0 0 0

0 1/6 0 0 0

0 0 1/6 0 0

0 0 0 1/6 0

0 0 0 0 1/6



×


0 0.117

0 0.204

−0.762 −0.235

0 0.03

0.762 −0.235

 =

[
0.193 0

0 0.03

]

The following plot depicts the output random variable after the Unscented Transform.

14.1 The Unscented Transform (UT) 295

Figure 14.6: 2D RV Unscented Transform.

The green shape is the covariance ellipse of the input random variable after the
non-linear transformation. The red circles on the right plot are the sigma points
after the non-linear transformation

(
X (i)

n+1,n

)
.

The blue ellipse is the covariance ellipse of the output random variable after the
Unscented Transform.

14.1.5 Unscented Transform summary
The Unscented Transform is a method for calculating the statistics of a random
variable that undergoes a non-linear transformation.

The Unscented Transform includes three steps:

• Step 1 - Select a set of points from the input distribution.
– The set of sigma points includes the mean and a certain number of points

located at a certain distance away from the mean.
– The N – dimensional random variable is approximated by 2N + 1 points.

296 Chapter 14. Unscented Kalman Filter (UKF)

Sigma Points Selection

X (0)
n,n = x̂n,n

X (i)
n,n = x̂n,n +

(√
(N + κ)Pn,n

)
i
, i = 1, · · · , N

X (i)
n,n = x̂n,n −

(√
(N + κ)Pn,n

)
i−N

, i = N + 1, · · · , 2N

(14.6)

Where:

N is the number of dimensions

κ (the Greek letter kappa) is a tuning parameter(√
(N + κ)Pn,n

)
is the ith row or column of the matrix square root of√

(N + κ)Pn,n

For Gaussian distribution, the rule of thumb is to set: N + κ = 3.

• Step 2 - Propagate each selected point through the non-linear function, produc-
ing a new set of points belonging to the output distribution.

Sigma Points Propagation

Xn+1,n = f (Xn,n) (14.7)

• Step 3 - Compute sigma points weights.

Sigma Points Weights

w0 = κ/(N + κ)

wi = 1/2(N + κ), i > 0

(14.8)

Where:

14.2 The UKF algorithm - Predict Stage 297

w0 - weight of the first sigma point
(
X (0)

n,n

)
w1 - weight of the other sigma points

(
X (i)

n,n

)
, i > 0

• Step 4 - Approximate mean and covariance of the output distribution:

Mean and covariance of the output distribution

x̂n+1,n =
2N∑
i=0

wiX (i)
n+1,n

Pn+1,n =
2N∑
i=0

wi

(
X (i)

n+1,n − x̂n+1,n

)(
X (i)

n+1,n − x̂n+1,n

)T (14.9)

Where:

Xn+1,n =
[
X (0)

n+1,n X (1)
n+1,n · · · X (2N)

n+1,n

]
w =

[
w0 w1 · · ·w2N

] (14.10)

14.2 The UKF algorithm - Predict Stage
Like the Linear Kalman Filter, UKF operates in a “predict–correct” loop. We start
with the prediction stage.

Extrapolate the current estimate to the text state using the Unscented Transform:

x̂n,n → x̂n+1,n

Pn,n → Pn+1,n

The following table compares the LKF and UKF predict stage equations:

298 Chapter 14. Unscented Kalman Filter (UKF)

L
K

F
U

K
F

x̂
n
+
1
,n
=

F
x̂
n
,n

P
n
+
1
,n
=

F
P

n
,n
F

T
+
Q

X
(0
)

n
,n
=

x̂
n
,n

X
(i
)

n
,n
=

x̂
n
,n
+
(√ (N

+
κ
)
P

n
,n

) i
,

i
=

1,
··
·,

N

X
(i
)

n
,n
=

x̂
n
,n
−
(√ (N

+
κ
)
P

n
,n

) i−
N
,

i
=

N
+
1,
··
·,

2N

X
n
+
1
,n
=

f
(X

n
,n
)

x̂
n
+
1
,n
=

2
N ∑ i=
0

w
iX

(i
)

n
+
1
,n

P
n
+
1
,n
=

2
N ∑ i=
0

w
i

(X
(i
)

n
+
1
,n
−
x̂
n
+
1
,n

)(X
(i
)

n
+
1
,n
−
x̂
n
+
1
,n

) T

Table 14.1: LKF and UKF predict stage equations.

14.3 Statistical linear regression
Before proceeding to the update stage (section 14.4), we must understand the
statistical linear regression concept [10], [11].

Consider a non-linear function y = g(x) evaluated in r points
(
X (i),Y(i)

)
, where

Y(i) = g
(
X (i)

)
.

Define:

14.3 Statistical linear regression 299

x =
1

r

r∑
i=1

X (i) Mean of X (i)

y =
1

r

r∑
i=1

Y(i) Mean of Y(i)

Pxx =
1

r

r∑
i=1

(
X (i) − x

) (
X (i) − x

)T Variance of X (i)

Pyy =
1

r

r∑
i=1

(
Y(i) − y

) (
Y(i) − y

)T Variance of Y(i)

Pxy =
1

r

r∑
i=1

(
X (i) − x

) (
Y(i) − y

)T Cross-variance of X (i) and Y(i)

Pyx =
1

r

r∑
i=1

(
Y(i) − y

) (
X (i) − x

)T Cross-variance of Y(i) and X (i)

Table 14.2: Definitions.

We want to approximate the non-linear function y = g(x) by a linear function
y = Mx+ b.

The linear approximation produces linearization error. For each point X (i), the
linearization error is given by:

e(i) = Y(i) −
(
MX (i) + b

)
(14.11)

To minimize the linearization error, we should find M and b that minimize the sum
of squared errors for all X (i) points:

min
M ,b

r∑
i=1

(
(e(i))Te(i)

)
(14.12)

The solution of Equation 14.12:

M = P T
xyP

−1
xx = PyxP

−1
xx

b = z −Mx
(14.13)

The derivation of Equation 14.13 is shown in Appendix F.

300 Chapter 14. Unscented Kalman Filter (UKF)

14.4 The UKF algorithm - Update Stage

14.4.1 State update
After a unit delay the Xn+1,n becomes Xn,n−1 , and x̂n+1,n becomes x̂n,n−1.

Using the Unscented Transform, transfer the state sigma points (Xn,n−1) to the
measurement space (Z) using the measurement function h(x):

Zn = h (Xn,n−1) (14.14)

zn =
2N∑
i=0

wiZ(i)
n (14.15)

Update estimate with measurement:

State Update

x̂n,n = x̂n,n−1 +Kn (zn − zn) (14.16)

14.4.2 Kalman gain derivation
The Kalman Gain (Kn) transforms the innovation (zn − zn) and the measurement
covariance (Pzn) from the measurement space to the system space using linearization:

innovation = (Mzn + b)− (Mzn + b) = M (zn − zn) (14.17)

Since the Kalman Gain performs a linear transformation, it produces linearization
errors. We want to minimize the linearization errors using the statistical linear
regression method. Therefore, the Kalman gain is given by:

Kalman gain

Kn = M = Pxzn (Pzn)
−1 (14.18)

Compute the weighted variance of the measurement (Pzn) and cross-covariance of
the state and the measurement (Pxzn):

14.4 The UKF algorithm - Update Stage 301

Weighted variance and cross-covariance

Pzn =
2N∑
i=0

wi

(
Z(i)

n − zn

)(
Z(i)

n − zn

)T
+Rn

Pxzn =
2N∑
i=0

wi

(
X (i)

n,n−1 − x̂n,n−1

)(
Z(i)

n − zn

)T (14.19)

14.4.3 Covariance update equation
The covariance update equation is given by:

Covariance update equation

Pn,n = Pn−1,n −KnPznK
T
n (14.20)

The following is a derivation of the covariance update equation.

Table 14.3: Covariance Update Equation derivation.

Equation Notes

Pn,n = E(ene
T
n)

= E
(
(xn − x̂n,n)(xn − x̂n,n)

T
) Estimate Covariance

= E
((

xn − x̂n,n−1 −Kn (zn − zn)
)

×
(
xn − x̂n,n−1 −Kn (zn − zn)

)T) Plug x̂n,n = x̂n,n−1 +Kn (zn − zn)

Continued on next page

302 Chapter 14. Unscented Kalman Filter (UKF)

Table 14.3: Covariance Update Equation derivation. (Continued)

= E
(
(xn − x̂n,n−1) (xn − x̂n,n−1)

T

− (xn − x̂n,n−1)
(
Kn (zn − zn)

)T
−Kn (zn − zn) (xn − x̂n,n−1)

T

+Kn (zn − zn)
(
Kn (zn − zn)

)T)
Expand

= Pn,n−1

−E
(
(xn − x̂n,n−1)

(
Kn (zn − zn)

)T
+Kn (zn − zn) (xn − x̂n,n−1)

T

−Kn (zn − zn)
(
Kn (zn − zn)

)T)
Pn,n−1 =

= E
(
(xn − x̂n,n−1) (xn − x̂n,n−1)

T)

= Pn,n−1

−E
(
(xn − x̂n,n−1) (zn − zn)

T KT
n

+Kn (zn − zn) (xn − x̂n,n−1)
T

−Kn (zn − zn)
(
Kn (zn − zn)

)T)
Apply the matrix transpose
property: (AB)T = BTAT

= Pn,n−1

−E
(
(xn − x̂n,n−1) (zn − zn)

T KT
n

+Kn (zn − zn)
(
(xn − x̂n,n−1)

T

− (Kn (zn − zn))
T))

Factor out: Kn (zn − zn)

= Pn,n−1

−E
(
(xn − x̂n,n−1) (zn − zn)

T KT
n

+Kn (zn − zn)
(
(xn − x̂n,n−1)

T

−(xn − x̂n,n−1)
T
))

Plug: Kn (zn − zn) = xn − x̂n,n−1

Continued on next page

14.4 The UKF algorithm - Update Stage 303

Table 14.3: Covariance Update Equation derivation. (Continued)

= Pn,n−1

−E
(
(xn − x̂n,n−1) (zn − zn)

T KT
n

) Remove zero term

Pn,n = Pn,n−1 − PxznK
T
n Pxz = E((xn − x̂n,n−1) (zn − zn)

T)

Pn,n = Pn,n−1 −KnPznK
T
n

Kn = Pxzn (Pzn)
−1

Pxzn = KnPzn

304 Chapter 14. Unscented Kalman Filter (UKF)

14.5 UKF update summary
The following table compares the LKF and UKF update stage equations:

L
K

F
U

K
F

K
n
=

P
n
,n
−
1
H

T
×
(HP

n
,n
−
1
H

T
+
R

n

) −1

x̂
n
,n
=

x̂
n
,n
−
1
+
K

n
(z

n
−
H

x̂
n
,n
−
1
)

P
n
,n
=

(I
−
K

n
H

)
P

n
,n
−
1
(I

−
K

n
H

)T
+

+
K

n
R

n
K

T n

Z
n
=

h
(X

n
,n
−
1
)

µ
z n

=
2
N ∑ i=
0

w
iZ

(i
)

n

P
z n

=
2
N ∑ i=
0

w
i

(Z
(i
)

n
−
z
n

)(Z
(i
)

n
−

z
n

) T +
R

n

P
x
z n

=
2
N ∑ i=
0

w
i

(X
(i
)

n
,n
−
1
−
x̂
n
,n
−
1

)(Z
(i
)

n
−
z
n

) T

K
n
=

P
x
z n
(P

z n
)−

1

x̂
n
,n
=

x̂
n
,n
−
1
+
K

n
(z

n
−

z
n
)

P
n
,n
=

P
n
−
1
,n
−

K
n
P

z n
K

T n

Table 14.4: LKF and UKF update stage equations.

14.6 UKF algorithm summary 305

14.6 UKF algorithm summary
The following diagram describes the UKF algorithm.

Figure 14.7: UKF algorithm diagram.

306 Chapter 14. Unscented Kalman Filter (UKF)

14.7 Example 13 – vehicle location estimation using radar
This example is identical to example 11 (section 13.7) with one difference. We use
UKF instead of EKF.

The state transition matrix F , the process noise matrix Q, the measurement covari-
ance R, and the measurement model h(x) are similar to example 11 (section 13.7).

F =



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1


=



1 1 0.5 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0.5

0 0 0 0 1 1

0 0 0 0 0 1



Q =



∆t4

4

∆t3

2

∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0
∆t4

4

∆t3

2

∆t2

2

0 0 0
∆t3

2
∆t2 ∆t

0 0 0
∆t2

2
∆t 1



σ2
a =



1

4

1

2

1

2
0 0 0

1

2
1 1 0 0 0

1

2
1 1 0 0 0

0 0 0
1

4

1

2

1

2

0 0 0
1

2
1 1

0 0 0
1

2
1 1



0.22

zn = h(xn)

[
r

φ

]
=


√
x2 + y2

tan−1
y

x



Rn =

[
σ2
rm 0

0 σ2
φm

]
=

[
52 0

0 0.00872

]

14.7 Example 13 – vehicle location estimation using radar 307

14.7.1 The numerical example
The radar measurements are also identical to example 11 (section 13.7):

1 2 3 4 5 6 7 8

r(m) 502.55 477.34 457.21 442.94 427.27 406.05 400.73 377.32

φ(rad) -0.9316 -0.8977 -0.8512 -0.8114 -0.7853 -0.7392 -0.7052 -0.6478

9 10 11 12 13 14 15 16 17

360.27 345.93 333.34 328.07 315.48 301.41 302.87 304.25 294.46

-0.59 -0.5183 -0.4698 -0.3952 -0.3026 -0.2445 -0.1626 -0.0937 0.0085

18 19 20 21 22 23 24 25 26

294.29 299.38 299.37 300.68 304.1 301.96 300.3 301.9 296.7

0.0856 0.1675 0.2467 0.329 0.4149 0.504 0.5934 0.667 0.7537

27 28 29 30 31 32 33 34 35

297.07 295.29 296.31 300.62 292.3 298.11 298.07 298.92 298.04

0.8354 0.9195 1.0039 1.0923 1.1546 1.2564 1.3274 1.409 1.5011

Table 14.5: Example 13 measurements.

14.7.1.1 UKF parameters computation

• The number of dimensions: N = 6

• The number of sigma points: 2N + 1 = 13

• The input variable distribution is Gaussian: N + κ = 3 =⇒ κ = −3

Weights Calculation

w0 = κ/(N + κ) = −1

w1 = 1/2(N + κ) = 1/6, i > 0

w =
[
−1 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6

]

308 Chapter 14. Unscented Kalman Filter (UKF)

diag(w) =



−1 0 0 0 0 0 0 0 0 0 0 0 0

0
1

6
0 0 0 0 0 0 0 0 0 0 0

0 0
1

6
0 0 0 0 0 0 0 0 0 0

0 0 0
1

6
0 0 0 0 0 0 0 0 0

0 0 0 0
1

6
0 0 0 0 0 0 0 0

0 0 0 0 0
1

6
0 0 0 0 0 0 0

0 0 0 0 0 0
1

6
0 0 0 0 0 0

0 0 0 0 0 0 0
1

6
0 0 0 0 0

0 0 0 0 0 0 0 0
1

6
0 0 0 0

0 0 0 0 0 0 0 0 0
1

6
0 0 0

0 0 0 0 0 0 0 0 0 0
1

6
0 0

0 0 0 0 0 0 0 0 0 0 0
1

6
0

0 0 0 0 0 0 0 0 0 0 0 0
1

6


14.7.1.2 Iteration Zero

Initialization

The filter initialized to the same values: (x̂0,0 = 400m, ŷ0,0 = −300m). Initial velocity
and acceleration are 0.

x̂0,0 =



400

0

0

−300

0

0



14.7 Example 13 – vehicle location estimation using radar 309

P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


Prediction

Sigma points computation

X (0)
0,0 = x̂0,0 =



400

0

0

−300

0

0


To find other sigma points, we should compute the square root:

√
(N + κ)P0,0 =

√√√√√√√√√√√√√√
3



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


We can use the Cholesky decomposition:

The manual computation of Cholesky decomposition is quite tedious. I provide here
Python and MATLAB examples.

310 Chapter 14. Unscented Kalman Filter (UKF)

Python example:

1 import numpy as np
2

3 P = 3*np.diag(np.tile (500 ,6))
4

5 print(P)
6

7 [[1500 0 0 0 0 0]
8 [0 1500 0 0 0 0]
9 [0 0 1500 0 0 0]

10 [0 0 0 1500 0 0]
11 [0 0 0 0 1500 0]
12 [0 0 0 0 0 1500]]
13

14 L = np.linalg.cholesky(P)
15

16 print(L)
17

18 [[38.72983346 0. 0. 0. 0. 0.
]

19 [0. 38.72983346 0. 0. 0. 0.
]

20 [0. 0. 38.72983346 0. 0. 0.
]

21 [0. 0. 0. 38.72983346 0. 0.
]

22 [0. 0. 0. 0. 38.72983346 0.
]

23 [0. 0. 0. 0. 0.
38.72983346]]

14.7 Example 13 – vehicle location estimation using radar 311

MATLAB example:

1 P = 3*diag(repmat (500 ,1,6))
2

3 P =
4

5 1500 0 0 0 0
0

6 0 1500 0 0 0
0

7 0 0 1500 0 0
0

8 0 0 0 1500 0
0

9 0 0 0 0 1500
0

10 0 0 0 0 0
1500

11

12 L = chol(P)’
13

14 L =
15

16 38.7298 0 0 0 0 0
17 0 38.7298 0 0 0 0
18 0 0 38.7298 0 0 0
19 0 0 0 38.7298 0 0
20 0 0 0 0 38.7298 0
21 0 0 0 0 0 38.7298

X (1)
0,0 = x̂0,0 +

(√
(N + κ)P0,0

)
1
=



400

0

0

−300

0

0


+



38.73

0

0

0

0

0


=



438.73

0

0

−300

0

0



X (2)
0,0 = x̂0,0 +

(√
(N + κ)P0,0

)
2
=



400

0

0

−300

0

0


+



0

38.73

0

0

0

0


=



400

38.73

0

−300

0

0



312 Chapter 14. Unscented Kalman Filter (UKF)

Similarly, we can compute X (3)
0,0 , · · · ,X

(6)
0,0 .

X (7)
0,0 = x̂0,0 −

(√
(N + κ)P0,0

)
1
=



400

0

0

−300

0

0


−



38.73

0

0

0

0

0


=



361.27

0

0

−300

0

0



X (8)
0,0 = x̂0,0 −

(√
(N + κ)P0,0

)
2
=



400

0

0

−300

0

0


−



0

38.73

0

0

0

0


=



400

−38.73

0

−300

0

0


Similarly, we can compute X (9)

0,0 , · · · ,X
(12)
0,0 .

Now, stack all sigma points in a matrix:

X0,0 =

 400 438.73 400 400 400 400 400 361.27 400 400 400 400 400
0 0 38.73 0 0 0 0 0 −38.73 0 0 0 0
0 0 0 38.73 0 0 0 0 0 −38.73 0 0 0

−300 −300 −300 −300 −261.27 −300 −300 −300 −300 −300 −338.73 −300 −300
0 0 0 0 0 38.73 0 0 0 0 0 −38.73 0
0 0 0 0 0 0 38.73 0 0 0 0 0 −38.73


Points propagation

Propagate each selected point through the non-linear function, producing a new set
of points belonging to the output distribution.

X1,0 = f (X0,0)

Since the dynamic model is linear, we can write:

X1,0 = FX0,0

X1,0 =

 400 438.73 438.73 419.36 400 400 400 361.27 361.27 380.64 400 400 400
0 0 38.73 38.73 0 0 0 0 −38.73 −38.73 0 0 0
0 0 0 38.73 0 0 0 0 0 −38.73 0 0 0

−300 −300 −300 −300 −261.27 −261.27 −280.64 −300 −300 −300 −338.73 −338.73 −319.36
0 0 0 0 0 38.73 38.73 0 0 0 0 −38.73 −38.73
0 0 0 0 0 0 38.73 0 0 0 0 0 −38.73


Mean and covariance computation

14.7 Example 13 – vehicle location estimation using radar 313

x̂1,0 = X1,0w =



400

0

0

−300

0

0


P1,0 = (X1,0 − x̂1,0) · diag(w) · (X1,0 − x̂1,0)

T +Q

=



1125.01 750.02 250.02 0 0 0

750.02 1000.04 500.04 0 0 0

250.02 500.04 500.04 0 0 0

0 0 0 1125.01 750.02 250.02

0 0 0 750.02 1000.04 500.04

0 0 0 250.02 500.04 500.04


14.7.1.3 First Iteration

Update

Using the Unscented Transform, transfer the state sigma points X1,0 to the measure-
ment space Z using the measurement function h(x):

Z1 = h (X1,0)

In order to compute Z1, we perform elementwise operations between the first row
of X1,0 that represents the x position (X1,0 (1, :)) and the fourth row of X1,0 that
represents the y position (X1,0 (4, :)):

Z1 = h (X1,0) =


√

X1,0 (1, :)
2 + X1,0 (4, :)

2

tan−1
X1,0 (4, :)

X1,0 (1, :)


Z1 = [500 531.49 531.49 515.62 477.77 477.77 488.63 469.59 469.59 484.65 524.15 524.15 511.85

−0.64 −0.6 −0.6 −0.62 −0.58 −0.58 −0.61 −0.69 −0.69 −0.67 −0.7 −0.7 −0.67]

Multiply Z1 by weights.

z1 = Z1w =

[
501.13

−0.64

]

Compute covariance at the measurement space:

314 Chapter 14. Unscented Kalman Filter (UKF)

Pz1 = (Z1 − z1) · diag(w) · (Z1 − z1)
T +R =

[
1146.7 0.0039

0.0039 0.0046

]

Compute the cross-covariance of the state and the measurement:

Pxz1 = (X1,0 − x̂1,0) · diag(w) · (Z1 − z1)
T =



899.1 1.35

599.5 0.9

199.95 0.3

−673.8 1.8

−449.3 1.2

−149.9 0.4


Compute the Kalman gain:

K1 = Pxz1 (Pz1)
−1 =



0.78 293.6

0.52 195.6

0.17 65.1

−0.59 392

−0.39 261.3

−0.13 87


Update estimate with measurement:

x̂1,1 = x̂1,0 +K1 (z1 − z1) =



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


Update covariance of the estimate:

P1,1 = P1,0 −K1Pz1K
T
1 =



23.5 15.7 5.3 −1.2 −0.63 −0.046

15.7 510.5 336.9 −0.55 −0.26 0.024

5.3 336.9 445.7 0.065 0.08 0.063

−1.2 −0.55 0.065 22.03 14.7 4.9

−0.63 −0.26 0.08 14.7 509.8 336.6

−0.046 0.024 0.063 4.9 336.6 455.6


Predict

Sigma points computation

14.7 Example 13 – vehicle location estimation using radar 315

X (0)
1,1 = x̂1,1 =



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


To find other sigma points, we should compute the square root:

√
(N + κ)P1,1 =

√√√√√√√√√√√√√√
3



23.5 15.7 5.3 −1.2 −0.63 −0.046

15.7 510.5 336.9 −0.55 −0.26 0.024

5.3 336.9 445.7 0.065 0.08 0.063

−1.2 −0.55 0.065 22.03 14.7 4.9

−0.63 −0.26 0.08 14.7 509.8 336.6

−0.046 0.024 0.063 4.9 336.6 455.6


We can use the Cholesky decomposition:

Python example:

1 import numpy as np
2

3 L = np.linalg.cholesky (3*P)
4

5 print(L)
6

7 [[8.3955 0. 0. 0. 0. 0.]
8 [5.6205 38.7305 0. 0. 0. 0.]
9 [1.8971 25.8212 25.8203 0. 0. 0.]

10 [-0.4253 0.0194 0.0194 8.1189 0. 0.]
11 [-0.2251 0.0129 0.0129 5.4145 38.7305 0.]
12 [-0.0165 0.0043 0.0043 1.8067 25.8212 25.8203]]

MATLAB example:

1 L = chol (3*P)’
2

3 L =
4

5 8.3955 0 0 0 0 0
6 5.6206 38.7305 0 0 0 0
7 1.8971 25.8212 25.8203 0 0 0
8 -0.4253 0.0194 0.0194 8.1189 0 0
9 -0.2251 0.0129 0.0129 5.4145 38.7305 0

10 -0.0165 0.0043 0.0043 1.8067 25.8212 25.8203

316 Chapter 14. Unscented Kalman Filter (UKF)

X (1)
1,1 = x̂1,1 +

(√
(N + κ)P1,1

)
1
=



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


+



8.4

5.62

1.9

−0.43

−0.23

−0.02


=



324.92

−50

−16.6

−414.2

−76.06

−25.3



X (2)
1,1 = x̂1,1 +

(√
(N + κ)P1,1

)
2
=



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


+



0

38.7

25.8

0.02

0.012

0.004


=



316.5

−16.9

7.3

−413.8

−75.8

−25.3


Similarly, we can compute X (3)

1,1 , · · · ,X
(6)
1,1 .

X (7)
1,1 = x̂1,1 −

(√
(N + κ)P1,1

)
1
=



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


−



8.4

5.62

1.9

−0.43

−0.23

−0.02


=



308.1

−61.24

−20.4

−413.3

−75.6

−25.25



X (8)
0,0 = x̂0,0 −

(√
(N + κ)P0,0

)
2
=



316.5

−55.6

−18.5

−413.8

−75.8

−25.23


−



0

38.7

25.8

0.02

0.012

0.004


=



316.52

−94.35

−44.3

−413.8

−75.9

−25.3


Similarly, we can compute X (9)

1,1 , · · · ,X
(12)
1,1 .

Now, stack all sigma points in a matrix:

X1,1 =

 316.52 324.9 316.52 316.52 316.52 316.52 316.52 308.13 316.52 316.52 316.52 316.52 316.52
−55.63 −50 −16.9 −55.63 −55.63 −55.63 −55.63 −61.24 −94.35 −55.63 −55.63 −55.63 −55.63
−18.5 −16.6 7.31 7.31 −18.5 −18.5 −18.5 −20.4 −44.3 −44.3 −18.5 −18.5 −18.5
−413.8 −414.2 −413.8 −413.8 −405.7 −413.8 −413.8 −413.8 −413.8 −413.8 −421.9 −413.8 −413.8
−75.8 −76.1 −75.8 −75.8 −70.4 −37.1 −75.8 −75.6 −75.8 −75.8 −81.3 −114.6 −75.8
−25.3 −25.3 −25.3 −25.3 −23.5 0.55 0.55 −25.3 −25.3 −25.3 −27.1 −51.1 −51.1


Points propagation

Propagate each selected point through the non-linear function, producing a new set

14.7 Example 13 – vehicle location estimation using radar 317

of points belonging to the output distribution.

X2,1 = f (X1,1)

Since the dynamic model is linear, we can write:

X2,1 = FX1,1

X2,1 =

 251.6 266.6 303.3 264.6 251.6 251.6 251.6 236.7 200 238.8 251.6 251.6 251.6
−74.1 −66.6 −9.6 −48.3 −74.1 −74.1 −74.1 −81.7 −138.7 −100 −74.1 −74.1 −74.1
−18.5 −16.6 7.3 7.3 −18.5 −18.5 −18.5 −20.4 −44.3 −44.3 −18.5 −18.5 −18.5
−502.2 −502.9 −502.2 −502.2 −487.8 −450.6 −489.3 −501.6 −502.2 −502.2 −516.7 −553.9 −515.15
−101.1 −101.3 −101.1 −101.1 −93.8 −36.55 −75.3 −100.9 −101.1 −101.1 −108.3 −165.7 −126.9
−25.3 −25.3 −25.3 −25.3 −23.4 0.55 0.55 −25.3 −25.3 −25.3 −27.1 −51.1 −51.1


Mean and covariance computation

x̂2,1 = X2,1w =



251.6

−74.1

−18.5

−502.2

−101.1

−25.3


P2,1 = (X2,1 − x̂2,1) · diag(w) · (X2,1 − x̂2,1)

T +Q

=



1019.1 1259.8 565 −2.54 −0.84 0.009

1259.8 1630 782.6 −0.6 −0.09 0.09

565.1 782.6 445.7 0.17 0.14 0.06

−2.54 −0.61 0.18 1014.1 1257.1 564.3

−0.84 −0.09 0.14 1257.1 1628.6 782.2

0.009 −0.09 0.06 564.3 782.2 445.6


14.7.1.4 Next Iterations

I want to encourage the readers to implement this example in software and compare
results.

The results of the second iteration:

x̂2,2 =



316.2

−5.99

17.48

−376.84

54.5

44.6



318 Chapter 14. Unscented Kalman Filter (UKF)

P2,2 =



24.97 30.9 13.8 0.8 1.02 0.6

30.9 111 101.2 1.05 −0.85 −0.56

13.8 101.2 140 0.54 −0.68 −0.4

0.8 1.05 0.54 25.7 31.9 14.35

1.02 −0.85 −0.68 31.9 109.8 100.5

0.6 −0.56 −0.4 14.35 100.5 139.6


The results of the last (thirty-fifth) iteration:

x̂35,35 =



20.87

−25.94

−0.84

298.4

2.56

−1.8



P35,35 =



4.1 1.72 0.36 0.95 0.31 0.04

1.72 1.3 0.38 0.17 0.2 0.04

0.36 0.38 0.16 −0.01 0.03 0.008

0.95 0.17 −0.01 12.05 4.01 0.72

0.31 0.2 0.03 4.01 2.28 0.56

0.04 0.04 0.008 0.72 0.56 0.19


14.7.2 Example summary

Figure 14.8 demonstrates the UKF location and velocity estimation performance.

The chart on the left compares the true, measured, and estimated values of the
vehicle position. Two charts on the right compare the true, measured, and estimated
values of x and y velocities.

We can see a satisfying performance of the UKF. Although the filter is roughly
initiated at about 100 meters from the true position with zero initial velocity, it
provides a good position estimation after taking two measurements and a good
velocity estimation after taking four measurements.

14.7 Example 13 – vehicle location estimation using radar 319

Figure 14.8: Example 13: true value, measured values and estimates.

Let us take a closer look at the vehicle position estimation performance. The following
chart describes the true, measured, and estimated values of the vehicle position
compared to the 95% confidence ellipses. We can see that the ellipses’ size constantly
decreases. That means that the UKF converges with time.

Figure 14.9: Example 13: true value, measured values and estimates - zoom.

320 Chapter 14. Unscented Kalman Filter (UKF)

The UKF results are similar to EKF.

We can see that at the linear part of the vehicle motion, the UKF copes with the
noisy measurements and follows the true vehicle position. On the other hand, during
the vehicle turning maneuver, the UKF estimates are quite away from the true
vehicle position, although they are within the 90% confidence ellipse bounds.

14.8 Sigma Point Algorithm Modification
Since Jeffrey Uhlmann prosed the Unscented Transform [18], many alternative
algorithms for sigma points computation appeared. Eric A. Wan and Rudolph van
der Merwe presented the most common and accepted algorithm in their paper [12].

The sigma points computation is parametrized by α, β, λ, and κ parameters.

Sigma Points parameters

λ = α2 (N + κ)−N (14.21)

Where:

N is the number of dimensions
α determines the spread of the sigma points around the mean and is

usually set to a small positive value (e.g., α = 0.001)
κ is a secondary scaling parameter that is usually set to 0

β is used to incorporate prior knowledge of the distribution of the input
random variable (for Gaussian distributions, β = 2 is optimal)

α, β, λ, κ are tuning parameters

α is a tuning parameter with a range of 0 < α ≤ 1, while higher α provides a higher
spread of the sigma points around the mean.

The sigma points are calculated as follows:

14.8 Sigma Point Algorithm Modification 321

Sigma Points

X (0)
n,n = x̂n,n (14.22)

X (i)
n,n = x̂n,n +

(√
(N + λ)Pn,n

)
i
, i = 1, · · · , N

X (i)
n,n = x̂n,n −

(√
(N + λ)Pn,n

)
i−N

, i = N + 1, · · · , 2N
(14.23)

(√
(N + λ)Pn,n

)
i
is the ith row or column of the matrix square root of

(N + κ)Pn,n.

The sigma points weights:

Sigma Points weights

w
(m)
0 = λ/(N + κ)

w
(c)
0 = λ/(N + λ) + (1− α2) + β

wi = 1/2(N + λ), i > 0

(14.24)

Where:

w
(m)
0 is a weight for the first sigma point X (0)

n,n when computing the weighted
mean

w
(c)
0 is a weight for the first sigma point X (0)

n,n when computing the weighted
covariance

wi is a weight for the other sigma points X (i)
n,n, i > 0 when computing the

weighted mean or covariance

The following figure describes the sigma points’ position for different α values. The
highest α provides a higher spread of the sigma points around the mean. The α

range is 0 < α ≤ 1.

322 Chapter 14. Unscented Kalman Filter (UKF)

Figure 14.10: α influence on the Sigma Points.

You should play with α to find the right value for your problem.

14.9 Modified UKF algorithm summary 323

14.9 Modified UKF algorithm summary

Figure 14.11: Modified UKF algorithm diagram.

Let us see an example.

324 Chapter 14. Unscented Kalman Filter (UKF)

14.10 Example 14 - estimating the pendulum angle
This example is identical to example 12 (section 13.8) with one difference. We use
UKF instead of EKF. In this example, we estimate the angle θ of an ideal gravity
pendulum.

We measure the pendulum position z = Lsin(θn).

The state vector of the pendulum is in the form of the following:

xn =

[
θn

θ̇n

]
(14.25)

Where:

• θn is the pendulum angle at time n

• θ̇n is the pendulum angular velocity at time n

The dynamic model of the pendulum is non-linear (the second type of non-linearity).
It has the form of:

x̂n+1,n = f(x̂n,n) (14.26)

x̂n+1,n =

[
θ̂n+1,n

ˆ̇θn+1,n

]
=

[
θ̂n,n +

ˆ̇θn,n∆t
ˆ̇θn,n − g

L
sin(θ̂n,n)∆t

]
(14.27)

f(x̂n,n) =

[
θ̂n,n +

ˆ̇θn,n∆t
ˆ̇θn,n − g

L
sin(θ̂n,n)∆t

]
(14.28)

The estimate covariance is:

P =

[
px pxẋ

pẋx pẋ

]
(14.29)

The elements of the main diagonal of the matrix are the variances of the estimation:

• px is the variance of the angle θ estimation
• pẋ is the variance of the angular velocity θ̇ estimation

Since the state-to-measurement relation (the first type of non-linearity) is non-linear,
the measurement equation is a type of:

14.10 Example 14 - estimating the pendulum angle 325

zn = h (xn) (14.30)

h (xn) = Lsin (θn) (14.31)

The example parameters:

• The Pendulum string length: L = 0.5m

• Gravitational acceleration constant: g = 9.8m
s2

• Measurement Uncertainty (standard deviation): σxm = 0.01m

• Process Noise Uncertainty (angular acceleration standard deviation): σa = 1 rad
s2

The process noise matrix Q is:

Q =

[
σ2
x σ2

xẋ

σ2
ẋx σ2

ẋ

]
=

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]
σ2
a =

[
1.5625× 10−6 6.25× 10−5

6.25× 10−5 0.0025

]
(14.32)

The measurement variance R is:

Rn =
[
σ2
xm

]
r = 0.012 (14.33)

14.10.1 The numerical example
The following table contains the set of the first 10 noisy measurements. The mea-
surements are identical to example 12 (section 13.8):

1 2 3 4 5 6 7 8 9 10

Lsin(θ) 0.119 0.113 0.12 0.101 0.099 0.063 0.008 -0.017 -0.037 -0.05

Table 14.6: Example 14 measurements.

14.10.1.1 UKF parameters computation

• The number of dimensions: N = 2

• The number of sigma points: 2N + 1 = 5

326 Chapter 14. Unscented Kalman Filter (UKF)

Weights Calculation

In this example, we use a modified algorithm for sigma points computation (sec-
tion 14.9).

λ = α2 (N + κ)−N

Set:

• κ = 0

• α = 0.1

• β = 2

λ = 0.12 (2 + 0)− 2 = −1.98

w
(m)
0 = λ/ (N − λ) = −1.98/ (2− 1.98) = −99

w
(c)
0 = λ/ (N − λ) + (1− α2 + β) = −1.98/ (2− 1.98) + (1− 0.12 + 2) = −96

wi = 1/ (2 (N + λ)) = 1/ (2 (2− 1.98)) = 25, i > 0

w
(m)
0,0 =

[
−99 25 25 25 25

]

W
(c)
0,0 =


−96 0 0 0 0

0 25 0 0 0

0 0 25 0 0

0 0 0 25 0

0 0 0 0 25


14.10.1.2 Iteration Zero

Initialization

We don’t know the pendulum angle, so our initial angle approximation includes an
error. We set the initial velocity to 0.

x̂0,0 =

[
0.0873

0

]

Since our initial state vector is a guess, we set a high estimate uncertainty. The high
estimate uncertainty results in a high Kalman Gain by giving high weight to the
measurement.

P0,0 =

[
5 0

0 5

]

14.10 Example 14 - estimating the pendulum angle 327

Prediction

Sigma points computation

To find other sigma points, we should compute the square root:

√
(N + λ)P0,0 =

√√√√0.02

[
5 0

0 5

]

We can use the Cholesky decomposition. The manual computation of Cholesky
decomposition is quite tedious. I provide here Python and MATLAB examples.

Python example:

1 import numpy as np
2

3 P = 0.02* np.diag(np.tile (5,2))
4

5 print(P)
6

7 [[0.1 0.]
8 [0. 0.1]]
9

10 L = np.linalg.cholesky(P)
11

12 print(L)
13 [[0.31622777 0.]
14 [0. 0.31622777]]

328 Chapter 14. Unscented Kalman Filter (UKF)

MATLAB example:

1 P = 0.02* diag(repmat (5,1,2))
2 L = chol(P)’
3

4 P =
5

6 0.1 0
7 0 0.1
8

9

10 L =
11

12 0.316227766016838 0
13 0 0.316227766016838

X (1)
0,0 = x̂0,0 +

(√
(N + λ)P0,0

)
1
=

[
0.0873

0

]
+

[
0.3162

0

]
=

[
0.403

0

]

X (2)
0,0 = x̂0,0 +

(√
(N + λ)P0,0

)
2
=

[
0.0873

0

]
+

[
0

0.3162

]
=

[
0.0873

0.3162

]

X (3)
0,0 = x̂0,0 −

(√
(N + λ)P0,0

)
1
=

[
0.0873

0

]
−

[
0.3162

0

]
=

[
−0.229

0

]

X (4)
0,0 = x̂0,0 −

(√
(N + λ)P0,0

)
2
=

[
0.0873

0

]
−

[
0

0.3162

]
=

[
0.0873

−0.3162

]

Now, stack all sigma points in a matrix:

X0,0 =

[
0.0873 0.403 0.0873 −0.229 0.0873

0 0 0.3162 0 −0.3162

]

Points propagation

Propagate each selected point through the non-linear function, producing a new set
of points belonging to the output distribution.

X1,0 = f (X0,0)

X0,0 =

[
0.0873 0.4035 0.1031 −0.229 0.0715

−0.0854 −0.3848 0.2308 0.2224 −0.4016

]

14.10 Example 14 - estimating the pendulum angle 329

Mean and covariance computation

x̂1,0 = X1,0w =

[
0.0873

0.1263

]

P1,0 = (X1,0 − x̂1,0) · diag(w) · (X1,0 − x̂1,0)
T +Q =

[
5.01 −4.55

−4.55 9.7

]

14.10.1.3 First Iteration

Update

Using the Unscented Transform, transfer the state sigma points X1,0 to the measure-
ment space Z using the measurement function h(x):

Z1 = h (X1,0)

In order to compute Z1, we perform elementwise operations between the first row of
X1,0 that represents the angle θ:

Z1 = h (X1,0) = Lsin (X1,0 (1, :))

Z1 =
[
0.0436 0.1963 0.0514 −0.1135 0.0357

]
Multiply Z1 by weights.

Compute covariance at the measurement space:

Pz1 = (Z1 − z1) · diag(w) · (Z1 − z1)
T +R = 1.226

Compute the cross-covariance of the state and the measurement:

Pxz1 = (X1,0 − x̂1,0) · diag(w) · (Z1 − z1)
T =

[
2.455

−2.273

]

Compute the Kalman gain:

K1 = Pxz1 (Pz1)
−1 =

[
2

−1.85

]

Update estimate with measurement:

x̂1,1 = x̂1,0 +K1 (z1 − z1) =

[
0.456

−0.215

]

Update covariance of the estimate:

330 Chapter 14. Unscented Kalman Filter (UKF)

P1,1 = P1,0 −K1Pz1K
T
1 =

[
0.097 0.0002

0.0002 5.489

]

Predict

Sigma points computation

X (0)
1,1 = x̂1,1 =

[
0.456

−0.215

]

To find other sigma points, we should compute the square root:

√
(N + λ)P1,1 =

√√√√0.02

[
0.097 0.0002

0.0002 5.489

]

We can use the Cholesky decomposition:

Python example:

1 import numpy as np
2

3 L = np.linalg.cholesky (0.02*P)
4

5 print(L)
6 [[4.39953012e-02 0.00000000e+00]
7 [8.53887720e-05 3.31328834e -01]]

MATLAB example:

1 L = chol (0.02*P)’
2

3

4 L =
5

6 0.0439953011769878 0
7 8.53887720392724e-05 0.331328833836111

X (1)
1,1 = x̂1,1 +

(√
(N + λ)P1,1

)
1
=

[
0.456

−0.215

]
+

[
0.043

8.5× 10−5

]
=

[
0.5

−0.215

]

X (2)
1,1 = x̂1,1 +

(√
(N + λ)P1,1

)
2
=

[
0.456

−0.215

]
+

[
0

0.3313

]
=

[
0.456

0.1164

]

X (3)
1,1 = x̂1,1 −

(√
(N + λ)P1,1

)
1
=

[
0.456

−0.215

]
−

[
0.043

8.5× 10−5

]
=

[
0.412

−0.215

]

14.10 Example 14 - estimating the pendulum angle 331

X (4)
1,1 = x̂1,1 −

(√
(N + λ)P1,1

)
2
=

[
0.456

−0.215

]
−

[
0

0.3313

]
=

[
0.456

−0.546

]

Stack all sigma points in a matrix:

X1,1 =

[
0.456 0.5 0.456 0.412 0.456

−0.215 −0.215 0.1164 −0.215 −0.546

]

Points propagation

Propagate each selected point through the non-linear function, producing a new set
of points belonging to the output distribution.

X2,1 = f (X1,1)

X2,1 =

[
0.445 0.489 0.462 0.4 0.429

−0.646 −0.685 −0.315 −0.6 −0.978

]

Mean and covariance computation

x̂2,1 = X2,1w =

[
0.445

−0.626

]

P2,1 = (X2,1 − x̂2,1) · diag(w) · (X2,1 − x̂2,1)
T +Q =

[
0.11 0.19

0.19 5.57

]

14.10.1.4 Next Iterations

The results of the second iteration:

x̂2,2 =

[
0.248

−0.962

]

P2,2 =

[
0.0018 0.0043

0.0043 5.25

]

The results of the last (tenth) iteration:

x̂10,10 =

[
−0.136

−1.21

]

P10,10 =

[
0.00017 0.00074

0.00074 0.01

]

332 Chapter 14. Unscented Kalman Filter (UKF)

14.10.2 Example summary
The following chart compares the true, measured, and estimated pendulum angles
for 50 measurements. (The measured angle is derived from the measured distance
θn = sin−1

(
z
L

)
). The chart also depicts the 95% confidence interval.

Figure 14.12: Example 14: pendulum angle - true value, measured values and estimates.

The next chart compares the true and estimated pendulum angular velocity.

Figure 14.13: Example 14: pendulum velocity - true value, measured values and estimates.

15. Non-linear filters comparison

Let us compare the EKF and UKF performance for our examples.

Examples 11 and 13 deal with vehicle location estimation using radar. In example
11, we used EKF, and in example 13, we used UKF. Both examples have identical
parameters – the same vehicle dynamics, the same radar, the same initialization,
and the same measurements.

The following charts compare the EKF and UKF absolute error of the vehicle position
on the X and Y axes.

Figure 15.1: EKF and UKF absolute error of the vehicle position.

We can see that the UKF performance is slightly better for the first two iterations
of the filter, but then the filters converge, and the performance of both filters is
identical.

Let us take a look at the estimations uncertainty (σ) of both filters.

334 Chapter 15. Non-linear filters comparison

Figure 15.2: EKF and UKF estimations uncertainty of the vehicle position.

The estimation uncertainties are also identical for both filters.

Examples 12 and 14 deal with the estimation of the pendulum angle and angular
velocity. In example 12, we used EKF, and in example 14, we used UKF. Both
examples have identical parameters – the same pendulum dynamics, the same
initialization, and the same measurements.

The following charts compare the EKF and UKF absolute error of the pendulum
angle and angular velocity.

Figure 15.3: EKF and UKF absolute error of the pendulum angle and angular velocity.

335

We can see that during the first 0.5 seconds, the UKF error is significantly higher.
Then the filters converge, and the performance of both filters is identical.

Let us take a look at the estimations uncertainty (σ) of both filters.

Figure 15.4: EKF and UKF estimations uncertainty of the pendulum angle and angular
velocity.

During the filter convergence period, the UKF uncertainty is higher than the EKF
uncertainty.

In this case, the EKF outperforms UKF.

16. Conclusion

Extended and Unscented Kalman Filters perform a linear approximation of the
dynamic and state-to-measurement models.

The Extended Kalman Filter is a standard and most common technique used in
non-linear estimation problems. Although the EKF became a standard for non-linear
estimation, almost 60 years of EKF usage experience has led to a consensus that it is
unreliable for highly non-linear models. The UKF is considered to be a better choice.
[8] and [9] paper demonstrate examples of superior UKF performance compared to
EKF.

On the other hand, in the vehicle location examples, we have seen a similar perfor-
mance of UKF and EKF. In the pendulum measurement example, the UKF was
even better during the filter convergence period.

Since both filters are sub-optimal, I recommend testing both filters for a specific
problem. Then you can choose a better approach.

I would also recommend considering the Particle Filter. The particle filter uses
using Monte-Carlo method technique for approximation. It is considered a precise
technique. However, it often requires thousands of times more computations. The
particle filter is out of the scope of this book. You can find a good tutorial in [13].

IV Kalman Filter in
practice

17 Sensors Fusion . 341

18 Variable measurement error 351

19 Treating missing measurements 353

20 Treating outliers . 355

21 Kalman Filter Initialization 363

22 KF Development Process 371

17. Sensors Fusion

Many practical systems are equipped with several complementary and sometimes
interchangeable sensors that measure the same parameters.

A self-driving car has Light Detection and Ranging (LiDAR) and radar onboard.
The LiDAR is much more precise than the radar. On the other hand, the radar
measures velocity using the Doppler Effect, and its effective operational range is
higher, especially in rain or fog conditions. The aircraft is equipped with Global
Navigation Satellite System (GNSS) and Inertial Navigation System (INS) systems
for navigation. Many surveillance systems include several radars for target tracking.

Using multiple sensors can significantly improve the state estimation precision in a
process known as sensor fusion.

Sensor fusion refers to combining the measurements from multiple sensors resulting
in joint information having less uncertainty than any of the sensors individually.

Let us examine the influence of the measurements fusion on the uncertainty.

17.1 Combining measurements in one dimension
Consider two range measurements of the same target performed by two independent
radars simultaneously. The SNR of the first radar measurement is higher than the
SNR of the second radar measurement. Thus the uncertainty of the first radar
measurement is lower.

The following figure represents the measurements of both radars as normally dis-
tributed random variables (Gaussians).

342 Chapter 17. Sensors Fusion

Figure 17.1: Two measurements PDF.

The PDFs are described by the following:

p(x)1 =
1

σ1

√
2π

exp

−
1

2

(
x− µ1

σ1

)2


p(x)2 =
1

σ2

√
2π

exp

−
1

2

(
x− µ2

σ2

)2


(17.1)

Where:

µ1 is the measured value of the first radar
σ1 is the measurement standard deviation of the first radar
µ2 is the measured value of the second radar
σ2 is the measurement standard deviation of the second radar

Since the measurements are independent, the joint PDF is a product of two PDFs.
Let us see what happens when we multiply two Gaussians.

p(x) = p(x)1p(x)2 =
1

σ1

√
2π

exp

(
−1

2

(
x− µ1

σ1

)2
)

1

σ2

√
2π

exp

(
−1

2

(
x− µ2

σ2

)2
)

(17.2)

The product of two Gaussian PDFs is proportional to Gaussian PDF with the

17.1 Combining measurements in one dimension 343

following properties:

σ2
12 =

1

1

σ2
1

+
1

σ2
2

(17.3)

µ12 =

(
µ1

σ2
1

+
µ2

σ2
2

)
σ2
12 (17.4)

You can see the derivation in Appendix G.

Let us take a closer look at the Gaussian PDFs product properties.

Each measurement is weighted by the inverse of its variance. If the variance of the
first measurement is lower than the variance of the second measurement (σ2

1 < σ2
2),

then the weight of the first measurement is higher.

That means the Gaussian PDFs product is closer to the measurement with lower
variance.

The variance of the Gaussian PDFs product is always lower than the variance of each
measurement separately. Even a measurement with a very high variance contributes
to the overall precision. If σ2

2 = ∞ then σ2
12 = σ2

1.

The following plot exemplifies the fusion of two measurements. We can see that the
joint PDF is closer to the measurement with a lower variance. The variance of the
joint PDF is lower than the variance of each measurement.

344 Chapter 17. Sensors Fusion

Figure 17.2: Two measurements fusion.

17.2 Combining n measurements
The product univariate Gaussian PDFs is also a k-dimensional Gaussian PDF with
the following properties:

σ2
1···n =

1

1

σ2
1

+
1

σ2
2

+ · · ·+
1

σ2
n

=
1

n∑
i=1

σ2
i

(17.5)

µ1···n =

(
n∑

i=1

µi

σ2
i

)
σ2
1···n (17.6)

You can see the derivation of the generalization to n measurements in Appendix G.

Equation 17.5 shows that every additional measurement minimizes the overall uncer-
tainty.

17.3 Combining measurements in k dimensions
The multivariate k - dimensional normal distribution is given by:

p(x) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(17.7)

17.3 Combining measurements in k dimensions 345

Where:

µ is the measurement vector
Σ is the measurement (covariance matrix)

The product of n k - dimensional Gaussian PDFs is also a k - dimensional Gaussian
PDF with the following properties:

Σ−1
1···n =

n∑
i=1

Σ−1
i (17.8)

µ1···n = Σ
n∑

i=1

(
Σ−1

i µi

)
(17.9)

You can see the derivation in Appendix H.

Like in the univariate Gaussian case, the mean of the PDFs product is the weighted
mean of all PDFs, while the PDF with a lower variance has a higher weight. Each
PDF contributes to the joint PDF and reduces the joint PDF covariance.

Figure 17.3: Two 2D measurements fusion.

Figure 17.3 depicts two two-dimensional measurements. The blue and orange ellipses

346 Chapter 17. Sensors Fusion

represent the covariance of two measurements, and the red ellipse represents the
covariance of the joint PDF.

We can see that the multisensor measurement fusion results in a more precise
estimation.

17.4 Sensor data fusion using Kalman filter
Kalman filter is the most widespread algorithm for multisensor data fusion. This
chapter describes two different methods for multisensor data fusion using the Kalman
filter. For simplicity, we assume that the sensors’ sample rates are identical. We
discuss the multi-rate Kalman Filter in section 17.5.

17.4.1 Method 1 – measurements fusion
Measurement fusion is the most common sensor data fusion method. Typically it is
used by a system that is equipped with several sensors. The fusion is applied to the
sensors’ measurements.

Figure 17.4: 2 Sensors measurements fusion.

Two or more sensors provide measurements z
(1)
n , z

(2)
n , . . . ,z

(k)
n with measurement

covariance R
(1)
n , R

(2)
n , . . . ,R

(k)
n . Assuming normally distributed measurements PDFs,

we can calculate a joint PDF:

R−1
n =

k∑
i=1

R−1
i (17.10)

17.4 Sensor data fusion using Kalman filter 347

zn = Rn

k∑
i=1

(
R(i)−1

n z(i)
n

)
(17.11)

The conventional Kalman Filter receives the unified measurement (zn,Rn).

In the literature, you can also see that zn for two sensors is calculated as follows:

zn = z(1)
n +R(1)

n

(
R(1)

n +R(2)
n

)−1 (
z(2)
n − z(2)

n

)
(17.12)

First, it looks familiar. It is identical to the Kalman Filter state update equation,
which also calculates the fusion of two normally distributed PDFs – the measurement
and the prior estimate uncertainty.

Second, it is computationally effective. We perform only one matrix inversion.

You can find the derivation in Appendix H.

17.4.2 Method 2 – state fusion
Some applications involve different sensor systems that perform the same task. For
example, several geographically distributed radars can track the same target. Each
radar creates a separate target track using the Kalman filter. An external system
can receive radars’ tracks and compute a unified track with higher location precision.
The state fusion method is also called the track-to-track fusion algorithm.

Figure 17.5: Track-to-track fusion.

348 Chapter 17. Sensors Fusion

Figure 17.5 describes the state fusion method.

When the cross-covariance between the two track estimates can be ignored, the state
fusion involves a simple fusion of two random variables x̂

(1)
n,n and x̂

(2)
n,n with estimate

uncertainties P
(1)
n,n and P

(2)
n,n:

x̂n,n = x̂(1)
n,n + P (1)

n,n

(
P (1)

n,n + P (2)
n,n

)−1 (
x̂(2)
n,n − x̂(2)

n,n

)
(17.13)

The estimate covariance of the joint state x̂n,n is:

P−1
n,n = P (1)−1

n,n + P (2)−1

n,n (17.14)

The measurements from the two sensor tracks are not necessarily independent, and the
two tracks can be correlated due to the common process noise (the target dynamics
is not deterministic). The correlated estimation errors have to be considered in
combining the state estimates. Otherwise, the target state estimates in the system
tracks may degrade.

The method for correlated state fusion was shown by Bar-Shalom [14]. The fused
state is given by:

x̂n,n = x̂(1)
n,n+

(
P (1)

n,n − P (12)
n,n

) (
P (1)

n,n + P (2)
n,n − P (12)

n,n − P (21)
n,n

)−1 (
x̂(2)
n,n − x̂(2)

n,n

)
(17.15)

P
(12)
n,n =

(
P

(21)
n,n

)T
is the cross-covariance matrix between x̂

(1)
n,n and x̂

(2)
n,n. The cross-

covariance matrix is given by:

P
(12)
n,n =

(
I −K

(1)
n H(1)

)
FP

(12)
n,n−1F

T
(
I −K

(2)
n H(2)

)T
+
(
I −K

(1)
n H(1)

)
GQGT

(
I −K

(2)
n H(2)

)T (17.16)

Where:
K is a Kalman Gain
H is an Observation Matrix
F is a State Transition Matrix
Q is a Process Noise Covariance Matrix
G is a Control Matrix

Bar-Shalom and Campo showed [15] that when this dependence is taken into account,
the area of the uncertainty ellipse is reduced by 70% percent instead of being cut by
50% as would be the case if the independent noise assumption were correct.

17.5 Multirate Kalman Filter 349

17.5 Multirate Kalman Filter
In many applications, the sensors’ sample rates are not identical. For example,
assume two sensors with a sampling rate of ∆t and 3∆t. The Kalman Filter update
scheme is described in the following figure.

Figure 17.6: Multirate Kalman Filter.

The first sensor measurement updates the Kalman Filter state every ∆t period. Every
3∆t period, the measurements of the first and the second sensors are combined.

18. Variable measurement error

Until now, in all our examples, the measurement uncertainty was constant. For
many measurement devices, the measurement uncertainty is a parameter given by
the vendor. For example, the weight measurement accuracy of the scales or the
power measurement accuracy of the power meter is a constant value.

However, in many systems, the measurement uncertainty varies between successive
measurements. For example, in a radar system, the range accuracy (standard
deviation) is given by:

σR =
c

2B
√
SNR

(18.1)

Where:

σR is a range measurement error (standard deviation)
c is the speed of light
B is a signal bandwidth
SNR is a signal-to-noise ratio

The radar range measurement variance is:

rn = σ2
Rn

=
c2

4B2SNRn

(18.2)

We can see that the range measurement uncertainty depends on SNR. The SNR

depends on many factors, such as interferences, target range, and perspective. For a
radar system, the measurement uncertainty is not constant.

19. Treating missing measurements

Sometimes the sensor measurements are lost due to noisy communication channels,
interferences, equipment malfunctions, or other anomalies. In such cases, you can
set the measurement to an arbitrary value while setting the measurement variance
to infinity.

The Kalman Gain would be zero:

Kn =
pn,n−1

pn,n−1 + rn
=

pn,n−1

pn,n−1 +∞
= 0 (19.1)

The current state estimation x̂n,n would be equal to the prior estimate x̂n,n−1:

x̂n,n = x̂n,n−1 + 0 (zn − x̂n,n−1) = x̂n,n−1 (19.2)

The current state estimation variance pn,n would be equal to the prior extrapolated
state variance pn,n−1:

pn,n = (1− 0) pn,n−1 = pn,n−1 (19.3)

In case of missing measurement, the extrapolated state variance pn+1,n would increase
due to the process noise:

pn+1,n = pn,n + qn = pn,n−1 + qn (19.4)

Therefore, the missing measurement causes a temporary Kalman Filter divergence.

20. Treating outliers

Outliers are measurements outside an expected range or don’t follow an expected
pattern. Outliers can result from noisy communication channels, interferences,
equipment malfunctions, recording errors, or other anomalies, such as radar signal
reflection from a bypassing aircraft.

Figure 20.1: Outlier example.

We will learn how to identify and treat outliers.

20.1 Identifying outliers
We can divide outliers into two main categories:

• Unlikely or unusual measurements
• High statistical distance between the prior estimate and the measurement

Let us analyze each category separately.

356 Chapter 20. Treating outliers

20.1.1 Unlikely or unusual measurements
Sometimes you may decide that the measurement is unlikely based on your technical
knowledge of the domain. For example:

• If the vehicle speed measurement is 400km/h, you can decide that the mea-
surement is an outlier since the car can’t travel at that speed.

• If the vehicle position measurement is far from the road, it is likely an outlier.
• The water temperature above 1000C is an outlier.

20.1.2 High statistical distance
Assume a system that estimates the vehicle speed using the Kalman Filter. The
prior estimate of the speed (prediction) x̂n,n−1 is 100km/h, and the measured speed
zn is 120km/h. The difference between the predicted and measured values is 20km/h.
Is it an outlier?

In order to answer this question, we should find the Mahalanobis distance.

The Mahalanobis distance is a measure of the distance between a point P and a
distribution D or between two random variables, introduced by P. C. Mahalanobis
in 1936.

In a single dimension, the Mahalanobis distance is given by:

dM =

√
(x̂n,n−1 − zn)

2

pn,n−1

(20.1)

Where:

x̂n,n−1 is the prior estimate
pn,n−1 is the prior estimate variance
zn is the measurement

Let’s return to the vehicle speed estimation example. If pn,n−1 = 150km2/h2, the
Mahalanobis distance is:

dM =

√
(100− 120)2

150
= 1.63 (20.2)

20.1 Identifying outliers 357

Figure 20.2: Low Mahalanobis distance.

If pn,n−1 = 10km2/h2, the Mahalanobis distance is:

dM =

√
(100− 120)2

10
= 6.32 (20.3)

Figure 20.3: High Mahalanobis distance.

In the first case, the measurement is not an outlier since the distance of 1.63 standard

358 Chapter 20. Treating outliers

deviations is reasonable. In the second case, the measurement is definitely an outlier.

A Kalman Filter designer should define the Mahalanobis distance threshold based
on the domain technical knowledge. Usually, it varies between 3 and 5.

For a multivariate Kalman Filter, the Mahalanobis distance is given by:

dM =

√
(x̂n,n−1 − zn)

T Pn,n−1 (x̂n,n−1 − zn) (20.4)

Where:

x̂n,n−1 is the prior estimate
Pn,n−1 is the prior estimate covariance matrix
zn is the measurement vector

20.2 Impact of outliers
The impact of an outlier depends on the variance of the outlier. Let us continue with
the example of vehicle speed estimation. The prior estimate of the speed (prediction)
x̂n,n−1 is 100km/h, and the measured speed zn is 120km/h.

We calculated the Mahalanobis distance for pn,n−1 = 10km2/h2:

dM =

√
(100− 120)2

10
= 6.32 (20.5)

The distance between the prior estimate and the measurement is 6.32 standard
deviations; therefore, the measurement is an outlier.

Let us take a look at the measurement uncertainty. The radar velocity measurement
accuracy is given by:

σV =
λB

2
√
2SNR

(20.6)

Where:

σV is a velocity measurement error (standard deviation)
λ is the signal wavelength
B is a signal bandwidth
SNR is a Signal to Noise Ratio

20.2 Impact of outliers 359

The radar velocity measurement variance is:

rn = σ2
Vn

=
λ2B2

8SNRn

(20.7)

Assume a noisy measurement with a low SNR that yields σVn = 30km/h.

Figure 20.4: Abnormal measurement with high uncertainty.

The Kalman Gain is given by:

Kn =
pn,n−1

pn,n−1 + rn
=

10

10 + 302
=

10

910
= 0.01 (20.8)

The state update equation is:

x̂n,n = x̂n,n−1 + 0.01 (zn − x̂n,n−1) = 0.99x̂n,n−1 + 0.01zn (20.9)

The Kalman Gain is very low; therefore, the impact of the noisy measurement with
high uncertainty is very low.

Now assume an outlier measurement with high SNR that yields σVn = 2km/h. Such
a measurement can be caused by an anomaly.

360 Chapter 20. Treating outliers

Figure 20.5: Abnormal measurement with low uncertainty.

The Kalman Gain is given by:

Kn =
pn,n−1

pn,n−1 + rn
=

10

10 + 22
=

10

14
= 0.71 (20.10)

The state update equation is:

x̂n,n = x̂n,n−1 + 0.71 (zn − x̂n,n−1) = 0.29x̂n,n−1 + 0.71zn (20.11)

The Kalman Gain is high; therefore, the impact of the abnormal measurement with
low uncertainty is very high.

20.3 Treating outliers
A high-impact outlier influences long-term filter stability. It influences the current
estimation and the following estimations. Since the following estimations are based
on the measurements and past estimations.

In case of an outlier with a high Mahalanobis distance, eliminate the outlier and
treat it as a missing measurement.

If the outlier is unlikely or unusual, but the Mahalanobis distance is low, consider
changing the outlier value to a reasonable value.

For example, when estimating the water temperature, you can set a lower temperature
bound to 00C and an upper temperature bound to 1000C. If the measurement

20.3 Treating outliers 361

temperature is 1010C, you can change the value to 1000C (the upper temperature
bound).

The outlier treatment algorithm includes the following steps:

• Identify an outlier by calculating the Mahalanobis Distance or based on the
domain knowledge.

• Estimate the outlier impact.
• Eliminate the outlier or change its value to a lower or upper bound.

21. Kalman Filter Initialization

The Kalman Filter must be initiated with a prior estimation x̂0,0. As well we should
supply the initialization covariance P0,0.

21.1 Linear KF Initialization
Let us recall example 9 (section 9.1) - vehicle location estimation. The true vehicle
location at the time t = 0 was x = 300, y = 425 .

We don’t know the vehicle location, so we set the initial position, velocity, and
acceleration to 0.

x̂0,0 =



0

0

0

0

0

0



Figure 21.1: LKF rough initiation.

364 Chapter 21. Kalman Filter Initialization

Figure 21.2 depicts the true vehicle position relative to initialization.

Since our initial state vector is a guess, we set a very high estimate uncertainty.

x̂0,0 = P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


We have seen that the high estimate uncertainty results in a high Kalman Gain by
giving a high weight to the measurement.

Finally, we could track the vehicle accurately, as shown in the next figure.

Figure 21.2: LKF rough initiation: True vs. estimated position.

Although KF initialization was a shot in the dark, it wasn’t a problem since we set a
high initial uncertainty.

Let us see what happens if we initiate the Kalman Filter close to the actual vehicle
position. Assume that we had approximate information about the actual vehicle

21.1 Linear KF Initialization 365

position at the time t = 0. We set:

x̂0,0 =



303

0

0

−428

0

0


In this case, the vehicle is also accurately tracked, as shown in the following figure.

Figure 21.3: LKF fine initiation: True vs. estimated position.

So can we always initiate the Kalman Filter with a random value? Let us compare
the estimation uncertainty for both cases.

In the following plot, we can see the estimation variance of the random initialization
(the blue line) and the estimation variance of the fine initialization (the orange line).

366 Chapter 21. Kalman Filter Initialization

Figure 21.4: LKF uncertainty: rough vs. fine initiation.

We can see a lower uncertainty of the fine initialization. The KF converges faster if
we initiate it with meaningful values.

21.2 Non-linear KF initialization
Let us recall example 11 (section 13.7) - “vehicle location estimation.” The scenario
in example 11 (section 13.7) is similar to example 9 (section 9.1). The measurement
is performed by radar. If the EKF is initiated close to the true position, the EKF
converges quickly and accurately tracks the target.

x̂0,0 =



100

0

0

−100

0

0


P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


The following figure depicts the true vehicle position and initialization point (on the
left) and estimated position vs. true position (on the right).

21.2 Non-linear KF initialization 367

Figure 21.5: Non-linear KF fine initiation.

Let’s see the EKF performance when the initialization point is moved farther.

x̂0,0 =



100

0

0

0

0

0


P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500


The EKF provides wrong estimations. After some time, it converges and tracks the
target, as shown in the following figure.

Figure 21.6: Non-linear KF rough initiation.

368 Chapter 21. Kalman Filter Initialization

If we move the initialization point again, it takes more time for EKF to converge.

x̂0,0 =



300

0

0

300

0

0


P0,0 =



500 0 0 0 0 0

0 500 0 0 0 0

0 0 500 0 0 0

0 0 0 500 0 0

0 0 0 0 500 0

0 0 0 0 0 500



Figure 21.7: Non-linear KF very rough initiation.

Figure 21.8: Non-linear KF very rough initiation: filter performance.

21.3 KF initialization techniques 369

Unlike the LKF, the non-linear Kalman Filter requires fine initiation; otherwise, it
wouldn’t be able to provide satisfactory results.

21.3 KF initialization techniques
There is no generic initialization technique or method. It depends on the system.

For example, the radar search process provides coarse target measurement used as
initialization for the tracker.

For other systems, an educated guess is sufficient for KF initialization.

You can also use the first measurement as initialization data and start the estimation
process with the second measurement.

22. KF Development Process

The Kalman Filter development process includes four phases:

• Kalman Filter Design
• Simulation
• Performance Examination
• Parameters Tuning

The following diagram describes the KF development process.

Figure 22.1: KF development process.

Let us explore each phase.

22.1 Kalman Filter Design
The KF design includes 6 steps:

Step 1: Define the Dynamic Model of the system.

• You are lucky if you know your system’s Dynamic Model (state extrapolation
equation).

• Otherwise, write down the differential equations that govern your system (the
state space representation), as described in Appendix C (“Modeling linear
dynamic systems”):

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(22.1)

• Solve the equations to determine the state extrapolation equation.

372 Chapter 22. KF Development Process

x̂n+1,n = F x̂n,n +Gûn,n (22.2)

• For a non-linear system, the differential equation is in the form of the following:

ẋ(t) = g (x(t)) (22.3)

• Solve the differential equation to determine the state extrapolation equation:

x̂n+1,n = f (x̂n,n) +Gûn,n (22.4)

• If you can’t solve the differential equation, perform the numerical integration
using a computer for the following integral:

f(x̂n,n) = x̂n,n +

∫ tn+1

tn

g (x(t)) dt (22.5)

Step 2: Define the measurement equation.

• For LKF:

zn = Hxn (22.6)

• For EKF:

zn = h(xn) (22.7)

Step 3: Process Noise error sources:

• Write down a list of all the error sources.
• Define the Process Noise matrix Q based on uncorrelated error sources (white

noise).
• The correlated noise sources must be a part of the Dynamic Model.

Step 4: Decide on the KF initialization method:

• The initialization method depends on your system.
• It can be an educated guess, a coarse measurement, or the first measurement.
• Decide on the initialization covariance P0,0.

Step 5: Add treatment for missing measurements.

Step 6: Decide on the outliers treatment method:

• Which measurement should be considered an outlier?
• How to treat outliers?

22.2 Simulation 373

22.2 Simulation
Simulation is a critical phase of the Kalman Filter development process. It allows us
to observe the filter performance in a controlled environment. The following diagram
describes the simulation block diagram.

Figure 22.2: KF simulation diagram.

The simulation is a computer program that contains the following modules:

• Scenario
• Measurements
• Kalman Filter
• Analysis

22.2.1 Scenario Module
The scenario module simulates what is happening in the real world.

The object-dynamics module generates different dynamics scenarios of the object of
interest. For example, the vehicle trajectory in example 9 (section 9.1), the pendulum
position in example 12 (section 13.8), or the heating liquid temperature in example
7 (section 5.3). The object dynamics shall include possible extreme conditions, like
sharp target maneuvers.

374 Chapter 22. KF Development Process

The environment module should simulate the environmental influence on the target
dynamics, like air turbulence influence on the aircraft, the icy road influence on the
vehicle, and the air-conditioner influence on the liquid temperature.

The generated scenario is a true state vector or the ground truth.

The environment noise module adds environmental noise to the ground truth - for
example, an aircraft radar cross-section fluctuations, radio interferences, etc.

The Kalman Filter designer should create enough object dynamics scenarios to
challenge his Kalman Filter design.

22.2.2 Measurements Module
The measurement model should create the sensor measurements, which are the input
to Kalman Filter.

For simple sensor like scales with a measurement uncertainty σ, generate a normally
distributed random noise with a standard deviation σ, and add the noise to the
generated scenario.

For EKF, the ground truth should be transformed into the sensor coordinates. For
example, the vehicle position in example 11 coordinates are X and Y . The sensor
coordinates are range (r) and the bearing angle (θ). Then the range noise and the
angle noise should be added to the transformed coordinates.

More sophisticated sensors require simulation of the sensor system to simulate
phenomena like clock drift, imperfections due to sampling, and other system-specific
aspects like beam broadening in radar.

22.2.3 Kalman Filter Module
The Kalman Filter simulation. See section 22.1 (Kalman Filter Design) for details.

22.2.4 Analysis
The analysis process includes the plotting module that creates results visualization.
The interesting plots are:

• Estimates vs. measurements vs. ground truth.
• If possible, add estimation confidence intervals or confidence ellipses to the

plot.
• Estimation uncertainty vs. time
• Kalman Gain vs. time

22.2 Simulation 375

The analysis module can be the Kalman Filter designer that analyses plots or
computer software that analyses results and makes conclusions.

22.2.5 Performance Examination
Before examining the KF performance, you should define the acceptable performance
criteria:

• The Root Mean Square (RMS) error between the ground truth and estimates.
• The RMS error between the ground truth and predictions.
• The maximum error between the ground truth and estimates.
• The maximum error between the ground truth and predictions.
• The filter convergence time.
• Prediction and estimation uncertainties.
• The confidence levels.

The criteria must be reasonable. Don’t expect low errors if your sensor is not accurate
or environmental noise is too high.

If the KF errors are too high, examine your dynamic model. You can increase the
process noise (Q) value. However, as we’ve seen in example 8 (section 5.4), improving
the dynamic model is a better approach.

Examine the filter convergence. The Kalman Gain should constantly decrease until
it reaches a certain floor level. As a result, the uncertainty of the estimates should
also decrease. If the convergence time is too high, examine the influence of the KF
initialization on the convergence time. Find methods for finer initialization values.
You can also decrease the process noise (Q) value, but make sure it doesn’t increase
the errors.

Figure 22.3 describes KF filter performance in example 8 (section 5.4). We can see
the 95% confidence intervals.

Assume that 100% of the ground truth is within the confidence intervals. Is it good?
Not necessarily. Your KF estimates uncertainty is too high. You can achieve lower
uncertainty estimates without compromising the confidence level.

376 Chapter 22. KF Development Process

Figure 22.3: KF simulation diagram.

V Appendices

A The expectation of variance 379

B Confidence Interval . 383

C Modeling linear dynamic systems 391

D Derivative of matrix product trace 407

E Pendulum motion simulation 411

F Statistical Linear Regression 415

G The product of univariate Gaussian PDFs . 421

H Product of multivariate Gaussian PDFs 427

Appendices . 377

A. The expectation of variance

We already know what the random variable is and what the expected value (or
expectation) is. If not, please read chapter 2 (“Essential background I”).

A.1 Expectation rules
The expectation is denoted by the capital letter E. The expectation of the random
variable E(X) equals the mean of the random variable:

Expectation

E(X) = µX (A.1)

where µX is the mean of the random variable.

Here are some basic expectation rules:

Rule Notes

1 E(X) = µX = Σxp(x) p(x) is the probability of x (discrete
case)

2 E(a) = a a is constant

3 E(aX) = aE(X) a is constant

4 E(a±X) = a± E(X) a is constant

5 E(a± bX) = a± bE(X) a and b are constant

6 E(X ± Y) = E(X)± E(Y) Y is another random variable

7 E(XY) = E(X)E(Y) If X and Y are independent

Table A.1: Expectation rules.

380 Appendix A. The expectation of variance

All the rules are quite straightforward and don’t need proof.

A.2 The expectation of the variance
The expectation of variance is given by:

Expectation of the variance

V (X) = σ2
x = E(X2)− µ2

X (A.2)

Where V (X) is the variance of X

The proof

Notes

V (X) = σ2
X = E((X − µX)

2)

= E(X2 − 2XµX + µ2
X)

= E(X2)− E(2XµX) + E(µ2
X) Applied rule number 5: E(a± bX) = a± bE(X)

= E(X2)− 2µXE(X) + E(µ2
X) Applied rule number 3: E(aX) = aE(X)

= E(X2)− 2µXE(X) + µ2
X Applied rule number 2: E(a) = a

= E(X2)− 2µXµX + µ2
X Applied rule number 1: E(X) = µX

= E(X2)− µ2
X

Table A.2: Variance expectation rule.

A.3 The expectation of the body displacement variance 381

A.3 The expectation of the body displacement variance
The body position displacement variance in terms of time and velocity is given by:

V (x) = ∆t2V (v) (A.3)

or

σ2
x = ∆t2σ2

v (A.4)

Where:
x is the displacement of the body
v is the velocity of the body
∆t is the time interval

The proof

Notes

V (K) = σ2
K = E(K2)− µ2

K

= E((v∆t)2)− (µv∆t)2 Express the body position variance in terms of
time and velocity: x = ∆tv

= E(v2∆t2)− µ2
v∆t2

= ∆t2E(v2)− µ2
v∆t2 Applied rule number 3: E(aX) = aE(X)

= ∆t2(E(v2)− µ2
v)

= ∆t2V (v) Applied expectation of variance rule:
V (X) = E(X2)− µ2

X

Table A.3: Variance square expectation rule.

B. Confidence Interval

This appendix describes the method of confidence interval computation for a one-
dimensional normal distribution.

B.1 Cumulative Probability
The cumulative probability is the likelihood that the value of a random variable
is within a specific range.

P (a ≤ X ≤ b) (B.1)

Let us return to the pizza delivery distribution example (see chapter 2 - “Essential
background I”). We want to find the likelihood that the pizza in city ’A’ would be
delivered within 33 minutes:

P (0 ≤ X ≤ 33)

Reminder, the pizza delivery time in the city ’A’ is normally distributed with a mean
of 30 minutes and a standard deviation of 5 minutes (µ = 30, σ = 5). We need to
find the area under the PDF curve between zero and 33 minutes:

Figure B.1: Cumulative Probability.

384 Appendix B. Confidence Interval

The filled area under Gaussian is given by:

F
(
x;µ, σ2

)
=

1√
2πσ2

∫ 33

0

exp

(
−(x− µ)2

2σ2

)
dx (B.2)

Don’t worry. We won’t need to compute this integral.

Let us define a standardized score (also called a z-score) to simplify the problem.

z-score is a standardized random variable with a mean of 0 and a standard deviation
of 1 (µ = 0, σ = 1).

z =
x− µ

σ
(B.3)

A z-score defines the distance of x from the mean in units of standard deviations.
For example:

• If z − score = 1, the value of z is one standard deviation above the mean.
• If z − score = −2.5, the value of z is 2.5 standard deviations below the mean.
• If z − score = 0, the value of z equals the mean.

The pizza delivery time in city ’A’ is a random variable with a mean of 30 and a
standard deviation of 5 (µ = 30, σ = 5).

z-score for 33 minutes is:

z =
33− 30

5
= 0.6

z-score for 0 minutes is:

z =
0− 30

5
= −6 (B.4)

The PDF of z is a standard normal distribution:

F (z) =
1√
2π

exp
(
−0.5z2

)
(B.5)

The cumulative probability is the area under the PDF between −∞ and z.

B.1 Cumulative Probability 385

Figure B.2: Standard Normal Distribution.

The Cumulative Probability CP of z is given by:

CP (z) =
1√
2π

∫ z

−∞
exp

(
−0.5z2

)
dz (B.6)

For our example, we need to find the following:

P (−6 ≤ z ≤ 0.6) = CP (z = 0.6)− CP (z = −6)

Calculating the PDF integral is not straightforward and requires much work. The
faster method is to use statistical z-score tables or computer software packages.

z-score tables contain precalculated cumulative probabilities for different z-scores.
Figure B.3 exemplifies the location of the cumulative probability for z-score (z=0.6).

Figure B.3: z-score table.

a href="https://www.z-table.com/

386 Appendix B. Confidence Interval

CP (z = 0.6) = 0.7257

You can use scientific computer software packages for a z-score integral computation.

The following commands compute the z-score integral in different computer software
packages:

Computer Software Package Command

Python
from scipy.stats import norm
norm.cdf(z)

MATLAB normcdf(z)

Excel NORM.DIST(z, 0, 1, TRUE)

Table B.1: Cumulative distribution from z-score.

Python example:

1 from scipy.stats import norm
2

3 norm.cdf (0.6)
4 0.7257468822499265
5

6 norm.cdf(-6)
7 9.865876450376946e-10

MATLAB example:

1 normcdf (0.6)
2

3 0.7257
4

5 normcdf (-6)
6

7 9.8659e-10

P (−6 ≤ z ≤ 0.6) = 0.7257− 0 = 0.7257

The likelihood of having a pizza in city ’A’ within 33 minutes is 72.57%.

Or in other words, 72.57 percentile of the pizza delivery time in city ’A’ is 33 minutes.

B.2 Normal inverse cumulative distribution 387

R When using computer software packages, you don’t need to calculate the
z-score. You can specify the mean and standard deviation as an argument of
the software function.

The following commands compute the cumulative distribution in different computer
software packages:

Computer Software Package Command

Python
from scipy.stats import norm
norm.cdf(x, mu, sigma)

MATLAB normcdf(x, mu, sigma)

Excel NORM.DIST(x, mu, sigma, TRUE)

Table B.2: Cumulative distribution from µ and σ.

Python example:

1 from scipy.stats import norm
2

3 norm.cdf(33, 30, 5)
4 0.7257468822499265

MATLAB example:

1 normcdf (33, 30, 5)
2

3 0.7257

B.2 Normal inverse cumulative distribution
In this chapter, we would like to answer a reverse question. What is the cumulative
distribution for a given percentile?

For example, what is the 80th percentile for the pizza delivery time in the city’ A’?

388 Appendix B. Confidence Interval

Figure B.4: Normal Inverse Cumulative Distribution.

One method is to use the z – score table:

• In the table below, find the cumulative distribution value closest to 0.8.
• The z − score is a sum of the row and the column of z − value: z = 0.84.

Figure B.5: z-score table.

Now, we must convert z to x:

z =
x− µ

σ
(B.7)

B.3 Confidence interval 389

x = zσ + µ = 0.84× 5 + 30 = 34.2

The 80th percentile for the pizza delivery time in the city ’A’ is 34.2 minutes.

If you use computer software, you can use the following commands:

Computer Software Package Command

Python
from scipy.stats import norm
norm.ppf(x, mu, sigma)

MATLAB norminv(p, mu, sigma)

Excel NORMINV(x, mu, sigma)

Table B.3: Normal cumulative distribution.

Python example:

1 from scipy.stats import norm
2

3 norm.ppf(0.8, 30, 5)
4 34.20810616786457

MATLAB example:

1 norminv (0.8, 30, 5)
2

3 34.2081

B.3 Confidence interval
A normally distributed random variable is described by mean (µ) and standard
deviation (σ). A confidence interval is a probability that a parameter falls between a
set of values for a certain proportion of times.

Assume a weight measurement of 80kg with a measurement standard deviation (σ)

of 2kg. The probability that the true weight falls between 78kg and 82kg is 68.25%.

Usually, we are interested in higher confidence levels, such as 90% or 95%. Let us
see how to find it.

The following plot describes the standard normal distribution (µ = 0, σ = 1). We
want to find a 90% confidence interval.

390 Appendix B. Confidence Interval

Figure B.6: Confidence interval.

The area of the filled region under the curve is 90% of the total area. The area of
the unfilled region is 10% of the total area. The area of the unfilled region on the
left is 5% of the total area. We can find a z-score for percentile 5 or percentile 95.

Python example:

1 from scipy.stats import norm
2

3 norm.ppf (0.05)
4 -1.6448536269514729
5

6 norm.ppf (0.95)
7 1.6448536269514722

MATLAB example:

1 norminv (0.05)
2 -1.6449
3

4 norminv (0.95)
5 1.6449

The 90% confidence interval is (±1.645σ).

For the weight measurement example, the 90% confidence interval is ±3.29kg. The
probability that the true weight falls between 76.71kg and 83.29kg is 90%.

C. Modeling linear dynamic systems

This chapter generalizes dynamic model derivation for any linear dynamic system.
The following description includes integrals and differential equations.

This chapter is the most challenging chapter of the book. It is not
required for the understanding of the Kalman Filter principles. If you
feel uncomfortable with this math – feel free to skip it.

On my side, I tried to make my explanations as straightforward and easy to follow
as possible, and, of course, I provided real-life examples.

C.1 Derivation of the state extrapolation equation
Our goal is to derive the state extrapolation equation in the form:

x̂n+1,n = F x̂n,n +Gûn,n +wn (C.1)

To do that, we need to model the dynamic system. In other words, to figure out the
state space representation of the dynamic system. The following two equations
are the state-space representation of the Linear Time Invariant (LTI) system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(C.2)

Where:

x is the state vector
y is the output vector
A is the system’s dynamics matrix
B is the input matrix
C is the output matrix
D is the feedthrough matrix

The following diagram summarizes the process of the state extrapolation equation
derivation.

392 Appendix C. Modeling linear dynamic systems

Figure C.1: The process of the state extrapolation equation derivation.

C.2 The state space representation
You might be wondering why the state space representation must be in the following
form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(C.3)

Many computer software packages that solve differential equations require this
representation.

The best way to describe the state space representation is by examples.

C.2.1 Example - constant velocity moving body
Since there is no external force applied to the body, the system has no inputs:

u(t) = 0 (C.4)

C.2 The state space representation 393

The state space variable x(t) is the body’s displacement p(t) and the speed v(t).

x(t) =

[
p

v

]
(C.5)

R To avoid confusion between the state vector x(t) (bold-face font) and the body
position along the x - axis denoted by x(t) (normal-face font), I’ve denoted
the body position by p(t).

ẋ(t) = Ax(t) +Bu(t) (C.6)

[
ṗ

v̇

]
= A

[
p

v

]
+B × 0 (C.7)

[
ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
(C.8)

A =

[
0 1

0 0

]
(C.9)

We’ve got the first equation in a differential form.

The dynamic system output y(t) is the body displacement p(t) that is also the state
variable.

y(t) = Cx(t) +Du(t) (C.10)

p = C

[
p

v

]
+D × 0 (C.11)

p =
[
1 0

] [p
v

]
(C.12)

394 Appendix C. Modeling linear dynamic systems

C =
[
1 0

]
(C.13)

We are done.

C.2.2 Modeling high-order dynamic systems
Many dynamic systems models are described by high-order differential equations.
The order of the differential equation is the number of the highest derivative in a
differential equation.

To tackle a high-order equation, we should reduce it to the first-order differential
equation by defining new variables and substituting them into the highest-order
terms.

C.2.2.1 The algorithm for reducing the differential equation order

A general n-th order linear differential equation can be expressed as a system of n
first-order differential equations.

The high-order governing equation of the dynamic system looks as follows:

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a2

d2y

dt2
+ a1

d1y

dt1
+ a0y = u (C.14)

The governing equation completely characterizes the dynamic state of the system.

Reducing the equation order

1. Isolate the highest-order derivative:

dny

dtn
= −a0

an
y − a1

an

d1y

dt1
− a2

an

d2y

dt2
− . . .− an−1

an

dn−1y

dtn−1
+

1

an
u (C.15)

y and its first n− 1 derivatives are the states of this system.
2. Define new variables: Setting x1 = y, we write:

x1 (t) = y

x2 (t) =
dy
dt

x3 (t) =
d2y
dt2

...

xn (t) =
dn−1y
dtn−1

(C.16)

C.2 The state space representation 395

Now, functions xi(t) are the state variables.
3. Take the derivatives of the state variables:

dx1

dt
= x2 (t)

dx2

dt
= x3 (t)

...
dx2

dt
= x3 (t)

dxn

dt
= dny

dtn

(C.17)

4. Plug the isolated dny
dtn

term (see step 1) into the last equation:

dx1

dt
= x2 (t)

dx2

dt
= x3 (t)

...
dxn−1

dt
= xn (t)

dxn

dt
= − a0

an
x1 − a1

an
x2 − a2

an
x3 − . . .− an−1

an
xn +

1
an
u

(C.18)

5. Express the resulting system of equations using vector-matrix notation:

dx1

dt
dx2

dt
...

dxn−1

dt
dxn

dt


=



ẋ1

ẋ2

...
ẋn−1

ẋn


=



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
0 0 0 · · · 0 1

− a0
an

− a1
an

− a2
an

· · · −an−2

an
−an−1

an





x1

x2

...
xn−1

xn


+



0

0
...
0
1
an


u

(C.19)

That’s it. We’ve got the state space equation in the form of the following:

ẋ(t) = Ax(t) +Bu(t) (C.20)

Where:

A =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
0 0 0 · · · 0 1

− a0
an

− a1
an

− a2
an

· · · −an−2

an
−an−1

an


(C.21)

396 Appendix C. Modeling linear dynamic systems

B =



0

0
...
0

1

an


(C.22)

Let us see two examples.

C.2.3 Example - constant acceleration moving body
In this example, there is an external force applied to the body.

The governing equation for a moving body with constant acceleration is Newton’s
second law:

mp̈ = F (C.23)

Where:

p is the body position displacement
m is the body mass
F is the external force applied to the body

Figure C.2: The constant acceleration model.

We are going to apply an order reduction algorithm to the governing equation.

C.2 The state space representation 397

1. Isolate the highest-order derivative:

p̈ =
1

m
F (C.24)

2. Define new variables x1 and x2:

x1 = p

x2 = ṗ
(C.25)

x1 and x2 are the state variables.
3. Take the derivatives of the state variables:

ẋ1 = x2

ẋ2 = p̈
(C.26)

4. Plug in the isolated p̈ term (see step 1) in the last equation:

ẋ1 = x2

ẋ2 =
F
m

(C.27)

5. Express the resulting system of equations using vector-matrix notation:[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0
1
m

]
F (C.28)

Remember that x2 = ṗ. It would be more meaningful to denote x2 by v, since x2 is
the body velocity.

We can rewrite the above equation as follows:[
ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
+

[
0
1
m

]
F (C.29)

Or: [
ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
+

[
0

1

]
a (C.30)

Where a is the body acceleration resulting from the applied force F .

We’ve got an equation in the form:

ẋ(t) = Ax(t) +Bu(t) (C.31)

398 Appendix C. Modeling linear dynamic systems

The state-space variable x(t) is the body’s displacement p(t) and the speed v(t).

The dynamic system output y(t) is the body displacement p(t) which is also an
element of the state variable.

y(t) = Cx(t) +Du(t) (C.32)

p = C

[
p

v

]
+Da (C.33)

p =
[
1 0

] [p
v

]
+
[
0
]
a (C.34)

C.2.4 Example - mass-spring-damper system
The mass-spring-damper system includes three basic elements:

• mass - inertia element
• spring - elastic element
• damper - frictional element

Figure C.3: Mass-spring-damper model.

Each of the elements has one of two possible energy behaviors:

• stores all the energy supplied to it
• dissipates all energy into heat by the “frictional” effect

The mass stores energy as kinetic energy.

When the spring is compressed from its original length, it stores the energy as
potential energy.

C.2 The state space representation 399

The damper dissipates energy as a heat.

These three components: mass, spring, and damper, can model any dynamic response
situation in a general sense.

The force diagram for this system is shown below.

Figure C.4: Mass-spring-damper forces.

The spring force is proportional to the position displacement p of the mass.

The viscous damping force is proportional to the velocity ṗ of the mass.

Newton’s second law states:∑
F = ma = m

d2p

dt2
= mp̈ (C.35)

We proceed by summing the forces and applying Newton’s second law:

∑
F = F (t)− cṗ− kp = mp̈ (C.36)

Where:
p is the body position displacement
m is the body mass
F is the external force applied to the body
k is the spring constant
c is the damping coefficient

This equation is a governing equation that completely characterizes the dynamic
state of the system.

400 Appendix C. Modeling linear dynamic systems

We are going to apply an order reduction algorithm to the governing equation.

1. Isolate the highest-order derivative:

p̈ = − k

m
p− c

m
ṗ+

1

m
F (C.37)

2. Define new variables x1 and x2:

x1 = p

x2 = ṗ
(C.38)

x1 and x2 are the state variables
3. Take the derivatives of the state variables:

ẋ1 = x2

ẋ2 = p̈
(C.39)

4. Plug in the isolated p̈ term (see step 1) in the last equation:

ẋ1 = x2

ẋ2 = − k
m
p− c

m
ṗ+ 1

m
F

(C.40)

5. Express the resulting system of equations using vector-matrix notation:[
ẋ1

ẋ2

]
=

[
0 1

− k
m

− c
m

][
x1

x2

]
+

[
0
1
m

]
F (C.41)

Remember that: x2 = ṗ, It would be more meaningful to denote x2 by v, since x2 is
the body velocity.

We can rewrite the above equation as follows:[
ṗ

v̇

]
=

[
0 1

− k
m

− c
m

][
p

v

]
+

[
0
1
m

]
F (C.42)

We’ve got an equation in the form of the following:

ẋ(t) = Ax(t) +Bu(t) (C.43)

The state-space variable x(t) is the body’s displacement p(t) and the speed v(t).

The dynamic system output y(t) is the body displacement p(t) which is also an

C.3 Solving the differential equation 401

element of the state variable.

y(t) = Cx(t) +Du(t) (C.44)

p = C

[
p

v

]
+D

F

m
(C.45)

C.2.5 More examples
You can find many beautiful examples of state-space modeling on the ShareTechnote
site.

C.3 Solving the differential equation
Remember, for our Kalman Filter model, we need to determine the state extrapolation
equation in the form of:

x̂n+1,n = F x̂n,n +Gûn,n (C.46)

To get there, we shall solve the differential equation that describes the state space
representation. We can use computer software to solve the differential equation or
do it ourselves. Let us see how to solve the differential equation.

C.3.1 Dynamic systems without input variable
LTI dynamic system without external input can be described by the first-order
differential equation:

ẋ = Ax (C.47)

Where A is a system dynamics matrix.

Our goal is to find the state transition matrix F .

We need to solve the differential equation to find F .

http://www.sharetechnote.com/html/DE_StateSpaceModel.html
http://www.sharetechnote.com/html/DE_StateSpaceModel.html

402 Appendix C. Modeling linear dynamic systems

In a single dimension, the differential equation looks as follows:

dx

dt
= kx

dx

x
= kdt

(C.48)

Integrating both sides results in the following:∫ x1

x0

1

x
dx =

∫ ∆t

0

kdt (C.49)

Solving the integrals:

ln (x1)− ln (x0) = k∆t

ln (x1) = ln (x0) + k∆t

x1 = eln(x0)+k∆t

x1 = eln(x0)ek∆t

x1 = x0e
k∆t

(C.50)

Similarly, in the multidimensional case, for:

ẋ = Ax (C.51)

The solution is:

xn+1 = xne
A∆t (C.52)

We’ve found the state transition matrix F :

F = eA∆t (C.53)

eAt is a matrix exponential.

The matrix exponential can be computed by Taylor series expansion:

eX =
∞∑
k=0

1

k!
Xk (C.54)

Therefore:

F = eA∆t = I +A∆t+
(A∆t)2

2!
+

(A∆t)3

3!
+

(A∆t)4

4!
+ . . . (C.55)

https://en.wikipedia.org/wiki/Matrix_exponential

C.3 Solving the differential equation 403

Where I is an identity matrix.

C.3.1.1 Example continued - constant velocity moving body

Now we can find the state transition matrix F for the constant velocity motion
equations.

The following set of differential equations can describe the constant velocity dynamic
model.

dp
dt

= v

dv
dt

= 0
(C.56)

In a matrix form:[
ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
(C.57)

A =

[
0 1

0 0

]
(C.58)

Let’s calculate A2

A2 =

[
0 1

0 0

][
0 1

0 0

]
=

[
0 0

0 0

]
(C.59)

Since A2 = 0, higher powers of A are also equal to 0.

Now, we can find the state transition matrix F for the constant velocity model:

F = eA∆t = I +A∆t =

[
1 0

0 1

]
+

[
0 1

0 0

]
∆t =

[
1 ∆t

0 1

]
(C.60)

xn+1 = Fxn =

[
1 ∆t

0 1

]
xn (C.61)

[
xn+1

ẋn+1

]
=

[
1 ∆t

0 1

][
xn

ẋn

]
(C.62)

404 Appendix C. Modeling linear dynamic systems

C.3.2 Dynamic systems with an input variable
For zero-order hold sampling, assuming the input is piecewise constant, the general
solution of the state space equation in the form of:

ẋ(t) = Ax(t) +Bu(t) (C.63)

is given by:

x(t+∆t) = eA∆t︸︷︷︸
F

x(t)+

∫ ∆t

0

eAtdtB︸ ︷︷ ︸
G

u(t) (C.64)

If we remove the input variable (u(t) = 0), we get the solution derived in the previous
chapter.

I am not going to prove this - you can find the proof in [19], or any other calculus
textbook.

Now let’s solve the state space equations for the constant acceleration moving body
and the mass-spring-damper system examples.

C.3.2.1 Example continued - constant acceleration moving body

Recall that the state-space representation of the constant acceleration moving body
is: [

ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
+

[
0

1

]
a (C.65)

Where:

A =

[
0 1

0 0

]
(C.66)

B =

[
0

1

]
(C.67)

Let’s solve the equation:

x(t+∆t) = eA∆t︸︷︷︸
F

x(t)+

∫ ∆t

0

eAtdtB︸ ︷︷ ︸
G

u(t) (C.68)

C.3 Solving the differential equation 405

Finding F

F = eA∆t (C.69)

We’ve already solved this for A =

[
0 1

0 0

]

F =

[
1 ∆t

0 1

]
(C.70)

Finding G

G =

∫ ∆t

0

eAtdtB (C.71)

The general formula for
∫ ∆t

0
eAtdt is the power series:

∫ ∆t

0

eAtdt = ∆t

(
I +

A∆t

2!
+

(A∆t)2

3!
+

(A∆t)3

4!
+ . . .

)
(C.72)

A2 =

[
0 1

0 0

][
0 1

0 0

]
=

[
0 0

0 0

]
(C.73)

The higher powers of A are also equal to 0.

∫ ∆t

0

eAtdt = ∆t

([
1 0

0 1

]
+

[
0 1

0 0

]
∆t

2

)
=

[
∆t 1

2
∆t2

0 ∆t

]
(C.74)

G =

∫ ∆t

0

eAtdtB =

[
∆t 1

2
∆t2

0 ∆t

][
0

1

]
=

[
1
2
∆t2

∆t

]
(C.75)

Now, we can write the state extrapolation equation:[
pn+1

ṗn+1

]
=

[
1 ∆t

0 1

][
pn

ṗn

]
+

[
1
2
∆t2

∆t

]
a (C.76)

406 Appendix C. Modeling linear dynamic systems

C.3.2.2 Example continued - mass-spring-damper system

Recall that the state-space representation of the mass-spring-damper system is:[
ṗ

v̇

]
=

[
0 1

− k
m

c
m

][
p

v

]
+

[
0
1
m

]
F (C.77)

Where:

A =

[
0 1

− k
m

c
m

]
(C.78)

B =

[
0
1
m

]
(C.79)

In this example, computation of the matrix exponential is not so easy since the high
powers of A are not zero. The Solution of this differential equation is beyond the
scope of this book.

D. Derivative of matrix product trace

In this appendix, I prove two statements:

(1) d
dA

(tr (AB)) = BT

(2) d
dA

(
tr
(
ABAT

))
= 2AB (for symmetric B)

Table D.1: Statements.

D.1 Statement 1
Given two matrices A(m× n) and B(n×m). The product of two matrices:

AB =


a11 · · · a1n
...

am1 · · · amn



b11 · · · b1m
...
bn1 · · · bnm

 =


∑n

i=1 a1ibi1 · · ·
∑n

i=1 a1ibim
...∑n

i=1 amibi1 · · ·
∑n

i=1 amibim


(D.1)

The trace of AB is the sum of the main diagonal:

tr(AB) =
n∑

i=1

a1ibi1 + · · ·+
n∑

i=1

amibim =
n∑

i=1

m∑
j=1

ajibij (D.2)

Differentiate using the function of gradient:

∂f(X)

∂X
=


∂f(X)
∂x11

· · · ∂f(X)
∂x1n...

∂f(X)
∂xm1

· · · ∂f(X)
∂xmn

 (D.3)

∂tr(AB)

∂A
=


∂(

∑n
i=1

∑m
j=1 ajibij)

∂a11
· · · ∂(

∑n
i=1

∑m
j=1 ajibij)

∂a1n...
∂(

∑n
i=1

∑m
j=1 ajibij)

∂am1
· · · ∂(

∑n
i=1

∑m
j=1 ajibij)

∂amn

 =


b11 · · · bn1
...

b1m · · · bnm

 = BT

(D.4)

408 Appendix D. Derivative of matrix product trace

D.2 Statement 2
Given two matrices A(m× n) and B(n× n).

ABAT =


a11 · · · a1n
...

am1 · · · amn



b11 · · · b1n
...
bn1 · · · bnn



a11 · · · am1

...
a1n · · · amn



=


∑n

i=1 a1ibi1 · · ·
∑n

i=1 a1ibin
...∑n

i=1 amibi1 · · ·
∑n

i=1 amibin



a11 · · · am1

...
a1n · · · amn



=


∑n

j=1

∑n
i=1 a1ibija1j · · ·

∑n
j=1

∑n
i=1 a1ibijamj

...∑n
j=1

∑n
i=1 amibija1j · · ·

∑n
j=1

∑n
i=1 amibijamj



(D.5)

The trace of ABAT is the sum of the main diagonal:

tr(ABAT) =
n∑

j=1

n∑
i=1

a1ibija1j+· · ·+
n∑

j=1

n∑
i=1

amibijamj =
m∑
k=1

n∑
j=1

n∑
i=1

akibijakj (D.6)

D.2 Statement 2 409

∂tr(ABAT)
∂A

=


∂(

∑n
k=1

∑n
j=1

∑n
i=1 akibijakj)

∂a11
· · · ∂(

∑n
k=1

∑n
j=1

∑n
i=1 akibijakj)

∂a1n...
∂(

∑n
k=1

∑n
j=1

∑n
i=1 akibijakj)

∂am1
· · · ∂(

∑n
k=1

∑n
j=1

∑n
i=1 akibijakj)

∂amn



=


∑n

j=1 b1ja1j +
∑n

i=1 a1ibi1 · · ·
∑n

j=1 bnja1j +
∑n

i=1 a1ibin
...∑n

j=1 b1jamj +
∑n

i=1 amibi1 · · ·
∑n

j=1 bnjamj +
∑n

i=1 amibin



=


∑n

j=1 a1jb1j · · ·
∑n

j=1 a1jbnj
...∑n

j=1 amjb1j · · ·
∑n

j=1 amjbnj

+


∑n

i=1 a1ibi1 · · ·
∑n

i=1 a1ibin
...∑n

i=1 amibi1 · · ·
∑n

i=1 amibin



=


a11 · · · a1n
...

am1 · · · amn



b11 · · · bn1
...
b1n · · · bnn

+


a11 · · · a1n
...

am1 · · · amn



b11 · · · b1n
...
bn1 · · · bnn


= ABT +AB

(D.7)

If B is symmetric, B = BT :

∂tr(ABAT)

∂A
= ABT +AB = AB +AB = 2AB (D.8)

E. Pendulum motion simulation

In this appendix we derive equations for pendulum motion simulation. Using these
equations, we create the ground truth for examples 12 and 14.

In section 12.3, we derived the differential equation that describes the pendulum
movement:

L
d2θ

dt2
= −g sin (θ) (E.1)

Where:

θ is the pendulum’s angle
L is the pendulum’s string length
g is the gravitational acceleration constant
t is time

Figure E.1: Pendulum motion.

412 Appendix E. Pendulum motion simulation

We re-write the equation as:

θ̈ +
g

L
sinθ = 0 (E.2)

This is a nonlinear equation, and we cannot solve it analytically.

Approximation: if θ is small, then sinθ ≈ θ, and in this situation, we have an
approximate equation given by:

θ̈ +
g

L
θ = 0 (E.3)

The method we shall employ for solving this differential equation is called the method
of inspired guessing. Since the sine and cosine functions are periodic, we propose the
following solution for the angle θ as a function of the time t:

θ(t) = Acos(ωt) +Bsin(ωt) (E.4)

At t = 0:

θ(t = 0) = A (E.5)

So, A is an initial angle, denoted by θ0.

Re-write Equation E.4:

θ(t) = θ0cos(ωt) +Bsin(ωt) (E.6)

The derivative of θ(t) is the angular velocity (ω) of the pendulum:

ω(t) =
dθ

dt
= θ̇ = −ωθ0sin(ωt) + ωBcos(ωt) (E.7)

To find B, evaluate ω(t) at t = 0:

ω(t = 0) = ωB (E.8)

B =
ω0

ω
(E.9)

413

Thus, our proposed solution now has the following form:

θ(t) = θ0cos(ωt) +
ω0

ω
sin(ωt) (E.10)

Let us prove that Equation E.10 is a solution to Equation E.7.

θ̇ = −ωθ0sin(ωt) + ω0cos(ωt) (E.11)

θ̈ = −ω2θ0cos(ωt)− ωω0sin(ωt) (E.12)

θ̈ = −ω2
(
θ0cos(ωt)−

ω0

ω
sin(ωt)

)
(E.13)

θ̈ = −ω2θ (E.14)

Comparing with Equation E.3, we conclude that:

ω2 =
g

L
(E.15)

ω =

√
g

L
(E.16)

Now, we can simulate the pendulum movement for small θ, using an approximation
sinθ ≈ θ.

F. Statistical Linear Regression

Note: In this appendix, for more convenient notation, I am using a counter variable
i in a subscript and not in a superscript.

Consider a nonlinear function y = g(x) evaluated in r points (Xi,Yi) , where
Yi = g (Xi). Define:

Equation Notes

x = 1
r

∑r
i=1 Xi Mean of Xi

y = 1
r

∑r
i=1 Yi Mean of Yi

Pxx = 1
r

∑r
i=1 (Xi − x) (Xi − x)T Variance of Xi

Pyy =
1
r

∑r
i=1 (Yi − y) (Yi − y)T Variance of Yi

Pxy =
1
r

∑r
i=1 (Xi − x) (Yi − y)T Cross-variance of Xi and Yi

Pyx = 1
r

∑r
i=1 (Yi − y) (Xi − x)T Cross-variance of Yi and Xi

Table F.1: Definitions.

We want to approximate the nonlinear function y = g(x) by a linear function
y = M (x) + b.

The linear approximation produces linearization error. For each point Xi, the
linearization error is given by:

ei = Yi − (MXi + b) (F.1)

To minimize the linearization error, we should find M and b that minimize the sum
of squared errors for all Xi points:

min
M,b

r∑
i=1

{
eT
i ei

}
(F.2)

416 Appendix F. Statistical Linear Regression

First, let us expand the above equation:

Equation Notes
r∑

i=1

{
eT
i ei

}
The sum of squared errors

=
r∑

i=1

{
(Yi − (MXi + b))T (Yi − (MXi + b))

}
Plug ei = Yi − (MXi + b)

=
r∑

i=1

{
YT

i Yi − YT
i MXi − YT

i b− (MXi)
T Yi

+(MXi)
T MXi + (MXi)

T b− bTYi

+bTMXi + bTb

} Expand

=
r∑

i=1

{
YT

i Yi − YT
i MXi − YT

i b−
(
YT

i MXi

)T
+X T

i M
TMXi + (MXi)

T b−
(
YT

i b
)T

+
(
(MXi)

T b
)T

+ bTb

}
Apply the matrix transpose
property: (BA)T = ATBT

=
r∑

i=1

{
YT

i Yi − 2YT
i MXi − 2YT

i b

+X T
i M

TMXi + 2 (MXi)
T b+ bTb

}

YT
i MXi is a scalar (row vector

× matrix × column vector):

YT
i MXi =

(
YT

i MXi

)T
Similarly:

(MXi)
T b =

(
(MXi)

T b
)T

YT
i b =

(
YT

i b
)T

Table F.2: Expand the error equation.

To minimize, differentiate and equalize to 0.

First, find an optimal b parameter.

417

Equation Notes

∂

∂b

(r∑
i=1

{
YT

i Yi − 2YT
i MXi − 2YT

i b+

+X T
i M

TMXi + 2 (MXi)
T b+ bTb

})
= 0

r∑
i=1

{
− 2YT

i + 2 (MXi)
T + 2bT

}
= 0 Differentiate

r∑
i=1

Yi = M

r∑
i=1

Xi +
r∑

i=1

b Simplify

ry = rMx+ rb Compute the sum

b = y −Mx Simplify

Table F.3: Finding an optimal b.

Find an optimal M parameter.

Equation Notes

∂

∂b

(r∑
i=1

{
YT

i Yi − 2YT
i MXi − 2YT

i b+

+X T
i M

TMXi + 2 (MXi)
T b+ bTb

})
= 0

r∑
i=1

{
− 2YiX T

i + 2MXiX T
i + 2bX T

i

}
= 0 Differentiate

r∑
i=1

{
− YiX T

i +MXiX T
i + (y −Mx)X T

i

}
= 0 Plug b

r∑
i=1

{
− YiX T

i +MXiX T
i + yX T

i −MxX T
i

}
= 0 Expand

r∑
i=1

{
YiX T

i − yX T
i

}
= M

r∑
i=1

{
XiX T

i − xX T
i

}
Reorder

M =

r∑
i=1

{
YiXT

i −yXT
i

}
r∑

i=1

{
XiXT

i −xXT
i

}
Table F.4: Finding an optimal M .

418 Appendix F. Statistical Linear Regression

Now we add two zero terms:

r∑
i=1

{
x xT −Xix

T
}
= 0

r∑
i=1

{
y xT − Yix

T
}
= 0

Equation Notes

M =

r∑
i=1

{
YiXT

i −yXT
i

}
+

r∑
i=1

{
y xT−Yix

T

}
r∑

i=1

{
XiXT

i −xXT
i

}
+

r∑
i=1

{
x xT−Xix

T

} Add zero terms to the
numerator and denominator

M =

r∑
i=1

{
YiXT

i −yXT
i +y xT−Yix

T

}
r∑

i=1

{
XiXT

i −xXT
i +x xT−Xix

T

} Reorder

M =

r∑
i=1

{
(Yi−y)XT

i −(Yi−y)xT

}
r∑

i=1

{
(Xi−x)XT

i −(Xi−x)xT

}

M =

r∑
i=1

{
(Yi−y)(XT

i −xT)
}

r∑
i=1

{
(Xi−x)(XT

i −xT)
}

M =

r∑
i=1

{
((Xi−x)(Yi−y)T)

T

}
r∑

i=1

{
((Xi−x)(Xi−x)T)

T

} Apply the matrix transpose
property: (BA)T = ATBT

M =
rP T

xy

rPxx

M = P T
xyP

−1
xx = PyxP

−1
xx

Table F.5: Finding an optimal M continued.

Summary

The linear approximation of a nonlinear function y = g(x) evaluated in r points
(Xi,Yi) , where Yi = g (Xi), described by the following:

y = Mx+ b (F.3)

419

Mimimization of the linearization error yields the following solution:

M = P T
xyP

−1
xx = PyxP

−1
xx

b = y −Mx
(F.4)

G. The product of univariate
Gaussian PDFs

G.1 Product of two univariate Gaussian PDFs
In this section, we derive the product of two univariate (one-dimensional) Gaussian
PDFs [16].

Let p(x)1 and p(x)2 be Gaussian PDFs:

p(x)1 =
1

σ1

√
2π

exp

−
1

2

(
x− µ1

σ1

)2


p(x)2 =
1

σ2

√
2π

exp

−
1

2

(
x− µ2

σ2

)2


(G.1)

Where:
µ1 is the mean of the first Gaussian PDF
µ2 is the mean of the second Gaussian PDF
σ1 is the standard deviation of the first Gaussian PDF
σ2 is the standard deviation of the second Gaussian PDF

The product of the two Gaussian PDFs is:

p(x)12 = p(x)1p(x)2 =
1

σ1

√
2π
exp

(
−1

2

(
x−µ1

σ1

)2)
1

σ2

√
2π
exp

(
−1

2

(
x−µ2

σ2

)2)
=

= 1
2πσ1σ2

exp
(
−1

2
(x−µ1)

2

σ2
1

+ (x−µ2)
2

σ2
2

) (G.2)

Let us examine the term in the exponent:

K =
1

2

(
(x− µ1)

2

σ2
1

+
(x− µ2)

2

σ2
2

)
(G.3)

422 Appendix G. The product of univariate Gaussian PDFs

Equation Notes

K = (x−µ1)
2

2σ2
1

+ (x−µ2)
2

2σ2
2

K =
σ2
2(x−µ1)

2+σ2
1(x−µ2)

2

2σ2
1σ

2
2

Common denominator

K =
(σ2

1+σ2
2)x2−2(µ1σ2

2+µ2σ2
1)x+µ2

1σ
2
2+µ2

2σ
2
1

2σ2
1σ

2
2

Expand

K =
x2−2

µ1σ
2
2+µ2σ

2
1

σ2
1+σ2

2
x−µ21σ

2
2+µ22σ

2
1

σ2
1+σ2

2

2
σ2
1σ

2
2

σ2
1+σ2

2

Divide by σ2
1 + σ2

2

Table G.1: Exponent term.

Define a zero term:

ϵ =

(
µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
−
(

µ1σ2
2+µ2σ2

1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

= 0 (G.4)

Add the zero term to K:

K = K+ ϵ =
x2 − 2

µ1σ2
2+µ2σ2

1

σ2
1+σ2

2
x+

(
µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

+

µ2
1σ

2
2+µ2

2σ
2
1

σ2
1+σ2

2
−
(

µ1σ2
2+µ2σ2

1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

(G.5)

The K equation is too long. Let us try to simplify the red and the blue terms
separately.

x2 − 2
µ1σ2

2+µ2σ2
1

σ2
1+σ2

2
x+

(
µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

=

(
x− µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

(G.6)

µ2
1σ

2
2+µ2

2σ
2
1

σ2
1+σ2

2
−
(

µ1σ
2
2+µ2σ

2
1

σ2
1+σ2

2

)2

2
σ2
1σ

2
2

σ2
1+σ2

2

=

µ21σ
2
2+µ22σ

2
1

(σ2
1+σ2

2)
2 (σ2

1+σ2
2)−

(
µ1σ

2
2+µ2σ

2
1

σ2
1+σ2

2

)2

2
σ2
1σ

2
2

σ2
1+σ2

2

=
µ2
1σ

2
2σ

2
1+µ2

1σ
4
2+µ2

2σ
4
1+µ2

2σ
2
1σ

2
2−µ2

1σ
4
2−2µ1µ2σ2

1σ
2
2−µ2

2σ
4
1

2σ2
1σ

2
2(σ2

1+σ2
2)

=
µ2
1+µ2

2−2µ1µ2

2(σ2
1+σ2

2)
= (µ1−µ2)

2

2(σ2
1+σ2

2)

(G.7)

G.1 Product of two univariate Gaussian PDFs 423

Combine the red term with the blue term:

K =

(
x− µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

+
(µ1 − µ2)

2

2 (σ2
1 + σ2

2)
(G.8)

Multiply the nominator and denominator by: 1/
√
σ2
1 + σ2

2

p(x)12 =
1/
√

σ2
1 + σ2

2

2π
√

σ2
1σ

2
2

σ2
1+σ2

2

exp

−

(
x− µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

 exp

(
− (µ1 − µ2)

2

2 (σ2
1 + σ2

2)

)
(G.9)

Rearrange:

p(x)12 =
1

√
2π
√

σ2
1σ

2
2

σ2
1+σ2

2

exp

−

(
x− µ1σ2

2+µ2σ2
1

σ2
1+σ2

2

)2
2

σ2
1σ

2
2

σ2
1+σ2

2

 1√
2π (σ2

1 + σ2
2)
exp

(
− (µ1 − µ2)

2

2 (σ2
1 + σ2

2)

)
(G.10)

Let us define:

µ12 =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

(G.11)

σ2
12 =

σ2
1σ

2
2

σ2
1 + σ2

2

(G.12)

Thus:

p(x)12 =
1√

2πσ12

exp

(
−(x− µ12)

2

2σ2
12

)
1√

2π (σ2
1 + σ2

2)
exp

(
− (µ1 − µ2)

2

2 (σ2
1 + σ2

2)

)
(G.13)

The green term is actually a Gaussian PDF with mean µ12 and standard deviation
σ12.

The orange term is a scaling factor that doesn’t depend on x:

S =
1√

2π (σ2
1 + σ2

2)
exp

(
− (µ1 − µ2)

2

2 (σ2
1 + σ2

2)

)
(G.14)

424 Appendix G. The product of univariate Gaussian PDFs

p(x)12 = S
1√

2πσ12

exp

(
−(x− µ12)

2

2σ2
12

)
(G.15)

Summary
The product of two Gaussian PDFs is proportional to the Gaussian PDF:

1√
2πσ12

exp

(
−(x− µ12)

2

2σ2
12

)
(G.16)

with mean:

µ12 =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

(G.17)

and variance:

σ2
12 =

σ2
1σ

2
2

σ2
1 + σ2

2

(G.18)

G.2 Product of n univariate Gaussian PDFs
Let us see the result of three Gaussian multiplication.

Derivation of variance:

Equation Notes

σ2
123 =

σ2
12σ

2
3

σ2
12+σ2

3

σ2
123 - variance of three Gaussians product

σ2
12 - variance of two Gaussians product

σ2
3 - variance of the third Gaussian

σ2
123 =

σ2
1σ

2
2

σ2
1+σ2

2
σ2
3

σ2
1σ

2
2

σ2
1+σ2

2
+σ2

3

Plug σ2
12 =

σ2
1σ

2
2

σ2
1+σ2

2

σ2
123 =

σ2
1σ

2
2σ

2
3

σ2
3(σ2

1+σ2
2)+σ2

1σ
2
2

Simplify

σ2
123 =

σ2
1σ

2
2σ

2
3

σ2
3σ

2
1+σ2

3σ
2
2+σ2

1σ
2
2

Expand

σ2
123 =

1
1

σ2
1
+ 1

σ2
2
+ 1

σ2
3

Divide by σ2
1σ

2
2σ

2
3

Table G.2: Three Gaussian multiplication variance.

G.2 Product of n univariate Gaussian PDFs 425

Derivation of mean:

Equation Notes

µ123 =
σ2
3µ12+σ2

12µ3

σ2
3+σ2

12

µ123 - mean of three Gaussians product
µ12 - mean of two Gaussians product
µ3 - mean of the third Gaussians
σ2
12 - variance of two Gaussians product

σ2
3 - variance of the third Gaussian

µ123 =
σ2
3

σ2
2µ1+σ2

1µ2

σ2
1+σ2

2
+

σ2
1σ

2
2

σ2
1+σ2

2
µ3

σ2
3+

σ2
1σ

2
2

σ2
1+σ2

2

Plug:
µ12 =

σ2
2µ1+σ2

1µ2

σ2
1+σ2

2

σ2
12 =

σ2
1σ

2
2

σ2
1+σ2

2

µ123 =
σ2
3σ

2
2µ1+σ2

3σ
2
1µ2+σ2

1σ
2
2µ3

σ2
3σ

2
2+σ2

3σ
2
1+σ2

1σ
2
2

µ123 =
σ2
3σ

2
2µ1+σ2

3σ
2
1µ2+σ2

1σ
2
2µ3

σ2
1σ

2
2σ

2
3

σ2
123

Plug:
σ2
3σ

2
2 + σ2

3σ
2
1 + σ2

1σ
2
2 =

σ2
1σ

2
2σ

2
3

σ2
123

µ123 =
(

µ1

σ2
1
+ µ2

σ2
2
+ µ3

σ2
3

)
σ2
123

Table G.3: Three Gaussian multiplication variance.

Using induction, we can show that the product of n Gaussians has the following
properties:

µN =

(
n∑

i=1

µi

σ2
1

)
σ2
N (G.19)

σ2
N =

1
1
σ2
1
+ 1

σ2
2
+ ...+ 1

σ2
n

=
1∑n

i=1 σ
2
i

(G.20)

H. Product of multivariate Gaussian
PDFs

H.1 Product of n multivariate Gaussian PDFs
In this section, we derive the product of n multivariate (multi-dimensional) Gaussian
PDFs [16].

Let N (µ;Σ) be a multivariate normal distribution, where µ is the vector of means
for variables x and Σ is the covariance matrix.

The PDF of N (µ;Σ) is given by:

p(x) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(H.1)

Where k is a dimension of x.

For a more convenient notation, let us change the form of the equation, by moving
the 1

(2π)k/2|Σ|1/2 term into the exponent.

Table H.1: Change the form of a multivariate Gaussian equation.

Equation Notes

1
(2π)k/2|Σ|1/2 = exp

(
ln
(

1
(2π)k/2|Σ|1/2

))
= exp

(
−ln

(
(2π)k/2|Σ|1/2

)) Move the 1
(2π)k/2|Σ|1/2 term

into the exponent.

p(x) = exp
(
− 1

2 (x− µ)T Σ−1 (x− µ)

−ln
(
(2π)k/2|Σ|1/2

)) Rewrite p(x)

(x− µ)T Σ−1 (x− µ)

=
(
xTΣ−1x− xTΣ−1µ− µTΣ−1x+ µTΣ−1µ

) Expand the term
(x− µ)T Σ−1 (x− µ)

Continued on next page

428 Appendix H. Product of multivariate Gaussian PDFs

Table H.1: Change the form of a multivariate Gaussian equation. (Continued)

(x− µ)T Σ−1 (x− µ)

=
(
xTΣ−1x− 2xTΣ−1µ+ µTΣ−1µ

) xTΣ−1µ = µTΣ−1x
(product of a vector, matrix,
and transposed vector is a scaler)

p(x) = exp
(
− 1

2x
TΣ−1x+ xTΣ−1µ

−1
2µ

TΣ−1µ− ln
(
(2π)k/2|Σ|1/2

)) Rewrite p(x)

p(x) = exp
(
−1

2x
TΣ−1x+ xTΣ−1µ+ g

) Define the term g as follows:
g = −1

2µ
TΣ−1µ− ln

(
(2π)k/2|Σ|1/2

)

Now, our multivariate normal PDF equation is much more elegant:

p(x) = exp

(
g + xTΣ−1µ− 1

2
xTΣ−1x

)
(H.2)

The product of n Gaussian PDFs is:

p(x)N =
n∏

i=1

p(x)i = exp

(
n∑

i=1

gi + xT

(
n∑

i=1

Σ−1
i µi

)
− 1

2
xT

(
n∑

i=1

Σ−1
i

)
x

)
(H.3)

Let us define:

Σ−1
N =

n∑
i=1

Σ−1
i (H.4)

Σ−1
N µN =

n∑
i=1

Σ−1
i µi (H.5)

Rewrite p(x)N :

p(x)N =
n∏

i=1

p(x)i = exp

(
n∑

i=1

gi + xTΣ−1
N µN − 1

2
xTΣ−1

N x

)
(H.6)

Note that g is a constant that doesn’t depend on x.

H.2 Product of 2 multivariate Gaussian PDFs 429

Define:

gN = −1

2
µT

NΣ
−1
N µN − ln

(
(2π)k/2|Σ|1/2N

)
(H.7)

We can write the following:

p(x)N = exp

(
n∑

i=1

gi − gN + gN + xTΣ−1
N µN − 1

2
xTΣ−1

N x

)
(H.8)

Take the orange term to a different exponent:

p(x)N = exp

(
n∑

i=1

gi − gN

)
exp

(
gN + xTΣ−1

N µN − 1

2
xTΣ−1

N x

)
(H.9)

The orange term is a scaling factor S:

S = exp

(
n∑

i=1

gi − gN

)
(H.10)

p(x)N = S · exp
(
gN + xTΣ−1

N µN − 1

2
xTΣ−1

N x

)
(H.11)

We can see that the product of n multivariate Gaussian PDFs is a Gaussian PDF
(the green term) multiplied by a scaling factor with the following properties:

Σ−1
N =

n∑
i=1

Σ−1
i (H.12)

µN = ΣN

n∑
i=1

Σ−1
i µi (H.13)

H.2 Product of 2 multivariate Gaussian PDFs
In the literature, you can also see that µ12 for two sensors is calculated as follows:

µ12 = µ1 +Σ1 (Σ1 +Σ2)
−1 (µ2 − µ1) (H.14)

430 Appendix H. Product of multivariate Gaussian PDFs

First, it looks familiar. It is identical to the Kalman Filter state update equation,
which also calculates the fusion of two normally distributed PDFs – the measurement
and the prior estimate. Second, it is computationally effective. We perform only one
matrix inversion.

In this section, we derive Equation H.14.

Σ−1
12 =

2∑
i=1

Σ−1
i = Σ−1

1 +Σ−1
2 (H.15)

µ12 = Σ12

2∑
i=1

Σ−1
i µi = Σ12

(
Σ−1

1 µ1 +Σ−1
2 µ2

)
(H.16)

Substitute Σ12:

µ12 =
(
Σ−1

1 +Σ−1
2

)−1 (
Σ−1

1 µ1 +Σ−1
2 µ2

)
=
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

1 µ1 +
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ2

(H.17)

Define a zero term:

ϵ =
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ1 −
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ1 = 0 (H.18)

Add ϵ to µ12:

µ12 = µ12 + ϵ =
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

1 µ1 +
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ2

+
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ1 −
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ1

(H.19)

Simplify the red term:

(
Σ−1

1 +Σ−1
2

)−1 (
Σ−1

1 µ1 +Σ−1
2 µ1

)
=
(
Σ−1

1 +Σ−1
2

)−1 (
Σ−1

1 +Σ−1
2

)
µ1 = µ1 (H.20)

Simplify the blue term:

(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ2 −
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 µ1 =
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 (µ2 − µ1)

(H.21)

H.2 Product of 2 multivariate Gaussian PDFs 431

µ12 = µ1 +
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 (µ2 − µ1) (H.22)

There are four matrix inversions in this equation.
Let us simplify the term

(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 .

Equation Notes(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2(
Σ2

(
Σ−1

1 +Σ−1
2

))−1 Apply the matrix inverse property:
(BA)−1 = A−1B−1

(
Σ2Σ

−1
1 +Σ2Σ

−1
2

)−1 Expand(
Σ2Σ

−1
1 + I

)−1

(
Σ2Σ

−1
1 +Σ1Σ

−1
1

)−1 Multiply and divide I by Σ1(
(Σ1 +Σ2)Σ

−1
1

)−1

Σ1 (Σ1 +Σ2)
−1 Apply the matrix inverse property:

(BA)−1 = A−1B−1

Table H.2: Reducing the number of the matrix inversions.

µ12 = µ1 +Σ1 (Σ1 +Σ2)
−1 (µ2 − µ1) (H.23)

Bibliography

Articles
[1] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.

In: Trans. of the ASME - Journal of Basic Engineering (1960), pages 35–45
(cited on page 5).

[2] Tarunraj Singh Dirk Tenne. “Optimal design of α− β − (γ) filters”. In: Pro-
ceedings of the American Control Conference 6 6 (Feb. 2000), pages 4348–4352.
doi: 10.1109/ACC.2000.877043 (cited on page 73).

[3] P. R. Kalata. “A generalized parameter for α−β and α−β−γ target trackers”.
In: The 22nd IEEE Conference on Decision and Control (Dec. 1983). doi:
10.1109/CDC.1983.269580 (cited on page 73).

[4] Wayne E. Hoover. “Algorithms For Confidence Circles and Ellipses”. In: NOAA
Technical Report NOS 107 CGS 3 (Sept. 1984) (cited on page 148).

[5] L. Campo Y. Bar-Shalom. “The Effect of the Common Process Noise on
the Two-Sensor Fused-Track Covariance”. In: Advances in Control Systems 3
(1966), pages 293–340. doi: https://doi.org/10.1016/B978-1-4831-6716-
9.50011-4 (cited on page 237).

[6] S. F. Schmidt L. A. Mcgee. “Discovery of the Kalman filter as a practical
tool for aerospace and industry”. In: ech. Rep., NASA-TM-86847 (1985). doi:
10.1109/TAES.1986.310815 (cited on page 237).

[7] Kai O. Arras. “An Introduction To Error Propagation: Derivation, Meaning and
Examples of Equation Cy=FxCxFxT”. In: EPFL-ASL-TR-98-01 R3 (1998).
doi: https://doi.org/10.3929/ethz-a-010113668 (cited on page 246).

[8] Jeffrey K. Uhlmann Simon J. Julier. “New extension of the Kalman filter to
nonlinear systems”. In: Proc. SPIE 3068, Signal Processing, Sensor Fusion,
and Target Recognition VI (July 1997). doi: https://doi.org/10.1117/12.
280797 (cited on pages 283, 284, 337).

[9] Eric A. Wan Rudolph Van Der Merwe. “Sigma-point kalman filters for prob-
abilistic inference in dynamic state-space models”. In: Oregon Health and
Science University (2004). doi: https://doi.org/10.6083/M4Z60KZ5 (cited
on pages 285, 337).

[10] H.F. Durrant-Whyte S. Julier J. Uhlmann. “A new method for the nonlinear
transformation of means and covariances in filters and estimators”. In: IEEE

https://doi.org/10.1109/ACC.2000.877043
https://doi.org/10.1109/CDC.1983.269580
https://doi.org/https://doi.org/10.1016/B978-1-4831-6716-9.50011-4
https://doi.org/https://doi.org/10.1016/B978-1-4831-6716-9.50011-4
https://doi.org/10.1109/TAES.1986.310815
https://doi.org/https://doi.org/10.3929/ethz-a-010113668
https://doi.org/https://doi.org/10.1117/12.280797
https://doi.org/https://doi.org/10.1117/12.280797
https://doi.org/https://doi.org/10.6083/M4Z60KZ5

434 Bibliography

Transactions on Automatic Control 45.3 (Mar. 2000), pages 477–482. doi:
10.1109/9.847726 (cited on page 298).

[11] Herman Bruyninckx Tine Lefebvre and Joris De Schutter. “Comment on A
new method for the nonlinear transformation of means and covariances in
filters and estimators”. In: IEEE Transactions on Automatic Control 47.8 (Aug.
2002), pages 1406–1408. doi: 10.1109/TAC.2002.800742 (cited on page 298).

[12] Rudolph van der Merwe Eric A. Wan. “The Unscented Kalman Filter for
Nonlinear Estimation”. In: IEEE Proceedings of IEEE 2000 adaptive systems
for signal processing, communication and control symposium (Oct. 2000). doi:
https://doi.org/10.3390/s21020438 (cited on page 320).

[13] René van de Molengraft Jos Elfring Elena Torta. “Particle Filters: A Hands-On
Tutorial”. In: Sensors 2021, 21(2) (2021), page 438 (cited on page 337).

[14] Y. Bar-Shalom K. C. Chang R. K. Saha. “On optimal track-to-track fusion”.
In: IEEE Transactions on Aerospace and Electronic Systems 33.8 (Oct. 1997),
pages 1271–1276. doi: doi:10.1109/7.625124 (cited on page 348).

[15] L. Campo Y. Bar-Shalom. “The Effect of the Common Process Noise on the
Two-Sensor Fused-Track Covariance”. In: IEEE Transactions on Aerospace and
Electronic Systems AES-22.6 (Nov. 1986), pages 803–805. doi: 10.1109/TAES.
1986.310815 (cited on page 348).

[16] P.A. Bromiley. “Products and Convolutions of Gaussian Probability Density
Functions”. In: Internal Report (Aug. 2014) (cited on pages 421, 427).

Books
[17] Joseph P.D. Bucy R.S. Filtering for Stochastic Processes with Applications to

Guidance, Chapter 16. Interscience, New York, 1968 (cited on page 182).
[18] Uhlmann Jeffrey. Dynamic map building and localization: new theoretical foun-

dations, Thesis (Ph.D.). University of Oxford, 1995 (cited on pages 283, 320).
[19] Tom M. Apostol. Calculus, theorem 8.3. John Wiley and Sons, Inc, 1967 (cited

on page 404).

https://doi.org/10.1109/9.847726
https://doi.org/10.1109/TAC.2002.800742
https://doi.org/https://doi.org/10.3390/s21020438
https://doi.org/doi: 10.1109/7.625124
https://doi.org/10.1109/TAES.1986.310815
https://doi.org/10.1109/TAES.1986.310815

Index

Symbols

α− β filter . 49
α− β track filtering equations52
α− β track update equations 52
α− β − γ filter. .66

A

Accuracy . 36
analytic linearization 221
approximated models.221

B

Bias error . 65
biased . 37

C

Cholesky decomposition 223
Cholesky factorization.223
control input . 205
control matrix. .151
control variable 151
Covariance Extrapolation Equation 99,

160
covariance matrix 136
Covariance Update Equation 83
cumulative probability 383

D

Dynamic error . 65
Dynamic Model . 28

E

elliptical scale factor 148
Estimate . 36
estimate error . 77
Expected Value . 29

G

g-h filter . 52
g-h-k filter . 66
Gaussian . 33
governing equation 394
ground truth . 374

H

Hidden State . 30

I

Initial Guess . 43
innovation . 43, 175
input transition matrix 151
input variable . 151

K

Kalman Filter . 28
Kalman Gain 43, 82
Kalman Gain Equation.82

L

lag error. .65, 114
Linear Approximation 221
Linear systems . 158

436 Index

Linear Time-Invariant 158
linearization error 280

M

Mahalanobis distance 356
Mean . 29
measurement error 77
Measurement Noise 28
measurement uncertainty 38, 77
moments . 36
Monte-Carlo method 337
multivariate normal distribution. . .136
multivariate random variable 136

N

Normal Distribution.33

O

observation matrix. .168, 172, 193, 209
optimal filter 80, 180, 221

P

Particle Filter . 337
PDF (Probability Density Function)33
Precision . 36
predicted estimate 45
Prediction Equation 50
Predictor Covariance Equation 160
prior estimate . 45
Process Noise.28, 99
Process Noise Variance 99

R

random measurement error 38
random variable . 35

S

Sigma point transform 285

Sigma Points .284
Standard Deviation 30
standard normal distribution 384
standardized score 384
State Extrapolation Equation 50
state extrapolation equation 151
State Space Model 28
state space representation 391
state transition matrix 151, 401
State Update Equation 42
state vector . 125
statistical distance 284
statistical linear regression 298
statistical linearization 221
sub-optimal . 221
system dynamics matrix401
system function 159
System State . 28
Systematic error 65

T

time-invariant system 159
trace . 180
track-to-track . 347
Transition Equation 50
Truncation error 65

U

unbiased . 37
uncertainty. .77
Unscented Transform 284

V

Variance . 30

Z

z-score . 384

	I Introduction to Kalman Filter
	1 The Necessity of Prediction
	2 Essential background I
	3 The – filter
	4 Kalman Filter in one dimension
	5 Adding process noise

	II Multivariate Kalman Filter
	6 Foreword
	7 Essential background II
	8 Kalman Filter Equations Derivation
	9 Multivariate KF Examples

	III Non-linear Kalman Filters
	10 Foreword
	11 Essential background III
	12 Non-linearity problem
	13 Extended Kalman Filter (EKF)
	14 Unscented Kalman Filter (UKF)
	15 Non-linear filters comparison
	16 Conclusion

	IV Kalman Filter in practice
	17 Sensors Fusion
	18 Variable measurement error
	19 Treating missing measurements
	20 Treating outliers
	21 Kalman Filter Initialization
	22 KF Development Process
	Appendices

	V Appendices
	A The expectation of variance
	B Confidence Interval
	C Modeling linear dynamic systems
	D Derivative of matrix product trace
	E Pendulum motion simulation
	F Statistical Linear Regression
	G The product of univariate Gaussian PDFs
	H Product of multivariate Gaussian PDFs
	Bibliography
	Index

